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SINGULAR POTENTIALS AND PERTURBATION
THEORY

STEPAN PICK*, Praha

The perturbation theory for ordinary differential operators with singular potentials is
studied on simple examples. Singular potentials induce a change of asymptotic behaviour
of eigenfunctions near the singularity. This effect is to some extent analogous to a change
of boundary conditions, and gives rise to “counterterms” in the perturbation theory
formulae. We show also that the analyticity of eigenfunctions in the coupling constant is
not equivalent, generally, to the analyticity of the corresponding operator in the Hilbert
space in any reasonable sense.

CHHI'YJIAPHBIE NOTEHUMAJNB U TEOPMA BO3MYMEHUN

B paGore na npocreix npumepax HM3y4aeTCs TCOPHS BOIMYLICHUH [ OGBIKHOBEHHDIX
nupepeHtManLHBIX ONEPaTOPOB ¢ CHHTYNIAPHLIMHA NOTeHUManaMu. CHHIYNspHbIie no-
TCHIMAGI BLI3LIBAIOT HCMEHEHHE ACHMIITOTHYECKOTO MOBEREHHS COGCTBEHHBIX (PyHK-
Lpil BO6/IM3M 0COGOM TOUKH. D70 sBNeHHE 10 HEKOTOPO# CTENEHH AHANOTHYHO MIMCHE-
HHIO TDAHHYHBIX YCHOBMH M UPUBORNMT K NOSBICHUIO «KOHTPYJIEHOB» B (hopMysax
Teopuu Bosmymennit. [Tokasano Takxe, YTO AHATHTHYHOCT COBCTBEHHBIX GyHKLmit no
KOHCTaHTe CBA3M B OOLIEM He 3KBUBANIEHTHA AHAIUTHYHOCTH COOTBETCTBYIOLLETO Oflepa-
TOpa 8 ru/ibOEPTOBOM MPOCTPAHCTBE.

L. INTRODUCTION

It is a well-known fact [1] that the formal perturbation theory leads to divergent
results in the case of the Schrédinger problem

—u'(x)+qx)ulx)=k’u(x), (1)

with the potential q singular at least as x 2 in the point x =0. In the present paper
we show on examples how to overcome this complication in the case of absolutely
continuous spectra. Isolated eigenvalues of singular differential operators have
been studied recently in 2]

We believe there are two reasons which make this problem topical : 1. There is
a chance to get a better insight into complications of more realistic physical theories
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dealing with unbounded operators, e.g. second-quantized theories. 2. We can get
some idea about the consequences of changed asymptotic and analytic properties
[1, 3] of the system in the singular region.

Although a number of physical applications of singular potentials is known, the
main purpose of this paper is to show what new effects to expect for physical
systems with complicated mathematical properties (see below) of generalized
eigenfunctions (GE) belonging to the continuous spectrum in the coupling constant
¢. In this paper we consider real analyticity only. The complex analyticity (complex
g) may be treated in a quite analogous way. The standard questions of the theory of
differential operators are presented in a somewhat simplified form ; for details see,
e.g., [4—9].

Note. Below we employ the symbol f~v(x) to express f=const v(x)+ higher
terms in x, x —» 0.

IL. PERTURBATION THEORY FOR x- -LIKE POTENTIALS

One of the most important tasks of the perturbation theory is to find asymptotic
or even analytic expansions in powers of a small parameter (coupling constant) g
for quantities of physical interest. The problem becomes a difficult one for singular
(unbounded) interactions. In physical theories we know the region in the space of
variables where the singularity is concentrated. An interesting case occurs when the
asymptotic or analytic behaviour of basic physical objects (eigenfunctions [4—7],
Green and correlation functions [1, 3]) in this region is changed. In many cases, this
change indicates a change of the domain of the Hamiltonian in its Hilbert space [7].
In local theories it is sufficient to know a set of boundary conditions on a surface
surrounding the singularity. These boundary conditions are g-dependent and
reveal the asymptotic properties we have mentioned. In final results, the surface is
to be removed by a limit passage. To obtain a correct perturbation theafy, we have
to expand the boundary conditions in g as well. The last fact is often obscured by
formal regularization methods, e.g. cutoffs. We shall call the terms we get in this
way due to the g-dependent asymptotic conditions — counterterms. Nonsingular
conditions can lead to singular counterterms as the example £°=exp (g In £),
£—0, g >0 shows.

The above discussion may be illustrated by the example of Eq. (1). The latter is
equivalent to the integral equation

u(x)=u(e) cos k(x —€)+u'(e) k" sin k(x—g)+

+k™ HQZQV sin k(x —y) dy.

[

2

Eq. (2) forms the starting point for the perturbation theory for potentials with an
isolated singularity in the point x =0. Let us consider the potential
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q(x)=g{g+D[x >+ V(x)]. . 3)

The potential V(x) is supposed to be continuous on [0, ®). We suppose also g (x)
decreases sufficiently quickly for x —o. Then the operator (1), (3) has an
absolutely continuous spectrum E = k> >0, with GE which behave like sin (kx + )
[8]. Consequently, we can study also the scattering matrix S (k, g)=exp (2i8). The
choice g(g +1) of the coupling constant is very convenient for our purpose,
although it is not obvious. Properties of the operator (1), (3) have been studied by
many authors, see [4—9] and references given therein. The potential (3) has been
studied within both one-dimensional models and the quantum mechanical scatter-
ing theory. In the latter case Eq. (1) can be considered as the radial Schrodinger
equation for a particle with a definite angular momentum. It is interesting to
mention that the predictions of classical and quantum physics are quite different in
this case. According to classical mechanics, the particle “falls” into the singularity
for g <O (attractive potential), which has no analogy in quantum mechanics, for
g=-1/2 at least [6, 7].

We shall recall only a few basic facts which hold true for sufficiently small values
of g].

To define a selfadjoint operator in the Hilbert space L((0, =), dx) we have to
add an asymptotic condition in x =0. This condition is fulfilled by any function
from the domain of this operator [7], and also by its GE [5]. There are two
independent conditions ’

fi~x' fo~x70. 4)
Any linear combination
f~x"""+A(g)x* 5)

with real A(g) defines a selfadjoint g-parametric operator family [7]. We put
~x ™ for A(g) = . For A(g) analytic, GE are analytic in g as well. For g=0,(5)
passes into the standard condition A(0)u’(0)— u(0)=0.

Let us put A(g)=0 in (5). This most natural condition [6, 7] is known from the
Regge theory, too [8]. The analyticity of this operator family for V(x) =0 has been
discussed by Kato [9] (Chap. VII, Example 4.15).

The simple shift A = g + 1/2 leads to common parametrization A*> — 1/4 instead of
g(g +1) [8]. The inclusion of the potential V(x) into the perturbation causes no
changes either in the general results of the Regge theory or in their proofs.

We shall construct a perturbation theory for the GE of this operator. As the
energy values are g-independent for the continuous spectrum, the theory simp-
lifies. The result is given by the following
Theorem: Let u(x) be the GE of the operator (1), (3), (5) with A(g)=0,
normalized by the condition u(x)=(1+g)'x (fx)' "+ 0o(x'*), x—0. u(x) is
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analyticin g for x>0 : y = M g"u, . The n-th approximation of u is given by the

formulae
Uo=u(g =0)=sin kx, (6)
us=1im [F(uo) +1n (ke) sin kx], %)
&£—0
u, =lim ﬁu@ulv +F(u, )+ (n!)! In"(ke) sin kx), n=2. (8)

(We have denoted F(v)= »L\MQ|~+ V() v(y) sin k(x —y) dy).

Proof: The analyticity of u in g is proved by the same method as in Theorem 7.2.1
in [8]. Now let us suppose for a moment that V(x) in (3) is analytic in x near x =0,
We have u=(1+ 9)7 (kx)e + r(x), r(x)=0(x**). Let us substitute this result
into (2) for the boundary conditions in the point ¢. The standard expansion of both
sides of (2) in powers of g [9] gives (6)—(8) up to the form of the counterterms.
Now let us perform the limit passage £ — 0. We need not bother about the existence

(ke)? sin kx is not ruled out. This gives (6)—(8). Results for general V(x) may be
proved easily by a limit passage.

For large values of X, u(x) behaves, of course, like A(g) sin (kx +6). The
amplitude depends on V(x). In such a way we can find from the results of the
theorem the phase shift and the scattering matrix elements of any order in g.

II. QUESTIONS OF ANALYTICITY 4

In the previous example we have been able to construct selfadjoint families of
Operators with GE analytic in g. The situation is quite different with the potential

q(x)=gx* : %)

The operator (1), (9) has been studied in [10, 11]. We shall add only a few
remarks concerning the results of [11]. In analogy with Eq. (4) the asymptotic
conditions near x =0 are

fi~x cosh Km, fo~-= sinh K.m (10)
x Vg x

_ They are analytic in g and pass into the conditions u(0)=0and u'(0)=0 for g=0.
For g <0, any real combination of conditions (10) defines a selfadjoint operator
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family in L,((0, ), dx). However, for g >0, the only admissible behaviour of GE
is a nonanalytic one [11]:
Vg
f~x mxnﬁllxl_v. (11)
This condition defines a nonselfadjoint operator for g <0. For g>0, (11) plays no
role in the definition of the domain of the corresponding operator. This happens
because the limit point case [4, 5] occurs in x =0,

For g <0, the corresponding Hamiltonians are not bounded from below. Indeed,
it is possible to prove that they posses (besides the obvious continuous spectrum
E =k*=0) an infinite sequence of bounded states with an arbitrary big negative
energy. Only unstable systems could be described by such operators without the
ground state. This has been made in [10] where a nonselfadjoint asymptotic
condition is employed to study the trapping of a particle.

The perturbation theory is constructed in analogy with the preceding section.
Now, however, the simple asymptotes ( 10), (11) do not provide sufficient
information to find all the counterterms. In fact, it would be necessary to study the
singularity of GE in detail by using methods of singular differential equations of the
second kind {4]. In the case of (11), we have to construct the perturbative

expansion in powers of Vg : y = M g9 "%u,.
n=0

In other words, the solution is analytic in the variable /\m

Clearly, even and odd terms in this serie are not coupled by the perturbation.
Oo:monannzvu we have to know both terms, u,, u,, of this expansion. The
comparison of (10) and (1 1) gives uo=sin kx, u, = cos kx.

Despite the fact that the solution is nonanalytic for g >0, we can formally define
another scattering operator by means of the phase shift of the analytic “GE” with
the “wrong” asymptotes, cf. (10). This example shows that convergence or even
analyticity of the perturbation theory series for some quantity does not prove the
existence of the perturbed theory in the Hilbert space. In our example we are able
to construct a “scattering operator”, which for g >0 is not connected with the
Hamiltonian in the Hilbert space. Indeed, to study the analyticity of an operator
family, more elaborate definitions of analyticity are necessary [9].

IV. CONCLUSIONS

We have seen that counterterms arise naturally in the singular perturbation
theory due to the varying asymptotic conditions. The explicit form of the
perturbation theory will, nevertheless, differ strongly for various types of singulari-
ty of eigenfunctions. In the case of the branching point (Sect. 2), the situation
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appears to be comparatively simple. For eigenfunctions essentially singular at x =0

(cf.

Sect. 3.; essential singularity combines with the branching point in the general °

case) cumbersome computations would be inevitable to find all the couterterms. :
The situation is analogous to the difference between the singular equations of the -
first and the second kind [4]. M

In the latter case, another complication can take place. The analytic solutionin g
can have no interpretation within the framework of the Hilbert space theory (Sect.
3). Hence, using formal “renormalized” expansion in powers of g, we can abandon °
the axioms of quantum mechanics. The physically interesting solutions are in this
case nonanalytic in g [2, 11]. The last fact complicates enormously the perturbation
methods for this type of problems.
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