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THE THEORETICAL MODEL OF CATAPHORESIS .‘
IN A PERIODICALLY PULSED d. c. GLOW DISCHARGE

JOZEF TRNOVEC*, PETER LUKAC*, Bratislava

The simple theoretical model of cataphoresis in a pulse d. c. glow discharge is
developed by using the equations for cataphoresis in the stationary glow discharge and
the nn.cmmonm for ordinary diffusion in a cylindrical tube with endbulbs. These differential
€quations are solved numerically by means of the difference schemes for various
discharge parameters. The results are presented in the non-dimensional form which can
be applied for any discharge conditions. .

TEOPETUYECKAR MOJENDb KATADOPE3A B INEPHOANYECKOM
HMIYALCHOM TAEIOMEM PA3PANE

B pa6ore npeanoxeHa npocras Moens NN.—.WGOUOuu B NEPHOAHYECKOM HMIYILCHOM
TACKOLIEM paspsne, HMCITOJNb3YIoas YpaBHEHHUSA HN%N&O?@&& IAA CTAUKOHAPHOTO TAEIO-

nudbepeHIHaNbHBIX YPaBHCHHH QIS pas3HbIX MapaMeTpoB paspsna, HCHONb3yIOLice
Meron cetok. Pesynbratel mpencramnens: s GesposmepHoit opme, n MOTYT OBITh
HCIIONB30BaNb! NS M0GBIX napaMeTpoB paspsja.

L. INTRODUCTION

It is well known that when a d. c. glow discharge is produced in the gas mixture,
a separation of the gas constituents is observed. Many authors studied experimen-
tally and theoretically this phenomenon (for more references see [1]). Deutsch
was the only one [2, 3] who investigated nxvmlanam:w cataphoretic processes in
the pulse and alternate discharges. In our previous work [4] we also observed by
the experimental indirect method the cataphoresis in the pulse d.c. glow discharge.
So far nobody has described this process theoretically. .

* Katedra experimentalne;j fyziky PFUK, Mlynskd dolina, CS-816 31 BRATISLAVA.
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In the present paper the axial separation in a pulse d. c. glow discharge is
theoretically explained. The simplified assumptions regarding relaxation processes
(connected with ion currents) and radial effects are used in the formulation of the
problem. Equations for cataphoresis in the stationary glow discharge and equations
for ordinary diffusion in the cylindrical tube with endbulbs are used to obtain the
simple modet. Equations of cataphoresis in the periodically pulsed d.c. glow
discharge are solved by using difference schemes described in this paper. The
calculation have been made for various discharge parameters and for various
volumes of the endbulbs of discharge tube.

II. FORMULATION OF THE PROBLEM

We assume that in the cylindrical glass tube containing a Penning gas mixture the
periodically pulsed d. c. glow discharge is excited. The cataphoresis effect is caused
by the drift current of the admixture ions to the cathode. Our pulse discharge
current is “ideal”, rectangular, of the duration “¢”, i.e., we have neglected the
relaxation processes of the electric field and admixture ions density. The repetition
period of pulses is “¢'”, i.e., the pulse frequency is 1/¢'. During the first pulse the
admixture ions are moving along the tube to the cathode situated at z =0 of the
discharge tube. The result of the unidirectional flow of ions is the occurrence of the
concentration gradient of admixture ions and atoms. This gradient leads to the
backward diffusion of the neutral admixture atoms during the pulse and mainly in
the afterglow period. The afterglow period, i.e. the time between two discharge
pulses is not sufficient to make the admixture atom concentration uniform along
the axis of the discharge tube [5]. The concentration gradient will only become
weaker. During the next pulse the undirectional flow of ions again increases the
concentration gradient of the admixture atoms. After the next interruption of the
discharge the backward ordinary diffusion will appear again. The same processes
will be continued in the next discharge pulses and their afterglow periods. In this
way, gradually, the gas segregation can be obtained in a periodically pulsed d. c.
glow discharge. The above mantioned processes may be described by the following
continuity equations [6, 7, 8] for the admixture ion density n, (r, z, t):

mP.ImNE wm m:.. m:..
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and the neutral atom density n(r, z, ¢): "
2
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.irmnm the first terms on the right-hand side represent the ordinary diffusion of th,
_wzm m.:a neutrals along the axis of a tube, the second terms represent the S&n_
diffusion om. ions or neutrals towards the wall. The third term in Eq. (1) Svnmmonﬂ
a moz.wom diffusion due to a uniform axial electric field and the last terms i
equations (1) and (2) the rate of homogeneous ionization which is a source for moznm—
(Eq. 1) and a sink for neutrals (Eq. 2). The quantities D;, D and D, are jonic
:mm:_‘m_ and ambipolar diffusion coefficients, respectively and v, is the drift <a_oomau
of ions. Egs. (1) and ( 2) describe cataphoresis during the pulse discharge, but in the
w?onm_osw an.moa the term v, 3n,/3z which represents the forced diffusion is equal
awm M“M,_.. _Mm:“m M”M.m:onm_oi periods these equations are identical with ordinary
To solve Eqs. (1), (2) we shall proceed in the following way. In the case when the
total effect of the radial terms can be neglected, we obtain by multiplying Eqgs. (1),

(2) by r, by integrating from the tube axis a
’ tr=0to th = .
these equations : r o the wall at r =R and adding

Mutn) A.%s+bﬂ+c on,
at ‘ 372 " Vi,

The bars .m: .ma...ﬁwv indicate radially averaged quantities. If we suppose that the
level of ionization of the admixture atoms @ =n,/n is low (i.e. ©<1) and

indepentent of z, then by neglecting the first term on the right side of Eq. (3), Eq.

(3) can be written in the following nondimensional form : ,

N_¥N_ &N
at mSN Q.m34 AA.V

id.onn N, tv)=n(z, t)/no, n, is the initial admixture atom concentration
:Emozz_.w dispersed in the discharge tube, t1=¢ D/L? is the normalized time,
n=2z/L is the normalized coordinate, L is the distance between the cathode and
the anode in the discharge tube, o = GulL/D. ,
Mmcmzou (4) must be solved under the boundary conditions which represent also
the influence of the endbulbs of the volumes V. and V, at the cathode and the:
anode, respectively. Normalized boundary conditions are [6, 7]: ];.

dN_3sN

ot an ToN at n=0, (5)
_¢IN_3N ,

mﬂlw:+8< at n=1, ©

where 8 =V,/aR’L, ¢=V,/aR*L. The initial distribution is N(n, 0)=1, the

coefficient a# 0 during the pulse discharge, i.e., for the time 7€ ( kz,, kt, + 7. ),
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where 7, is the normalized pulse duration, 7, id the normalized pulse period,
k=1,2,...,n and a =0 in the afterglow periods, i.e., for the time 7 e (kt, + 1,

(k+1)1,).

HIL SOLUTION OF THE CATAPHORESIS EQUATIONS
BY THE FINITE DIFFERENCE METHOD

The finite difference method is very effective for the solution of Eqgs. (4—6).
Therefore the approximation of Eq. (4) was made by replacing the time derivatives
by forward differences and the space derivatives by central differences. The
truncation error of this approximation is 0 (At + (An)?), Az, An are meshwidths of
the normalized time and space coordinates. The described approximation leads to
the simple explicit difference formula for new density values at the time 7 + At and
at 7 € (0,1). The stability condition of this explicit difference formula is:

(An) @)

<
AT >

The boundary conditions were approximated with the same precision in a similar
way as that used by Crank [9]. Let Eq. (4) be valid at the boundary points, then
two fictitious points are necessary for the approximation of this equation at the
distance + An from the electrodes. The values of N at these points are obtained
from the difference approximations of Egs. (5) and (6). The final forms of the
difference schemes are :

2 20 2
: At sN(An, 1) =N, 1) {a’— =+ 5
N(0. 7+ A1) =N(0, 7) + TE: N@A 4n Ei:
l—ad+-—
An
(8)
2 ., 2a 2
: At sN(I—-An. ©)+N(l.1) (e’ +—+ 5
N(1,t+Ar)=N(1,7)+ TE: = A Ay Eiz.
~+Qm+b|m

9)

From the stability analysis by means of the matrix method [10] it follows that if
2a<1/An, then expression (7) is also the stability criterion for all values of
quantities a, 8, £ used in our calculations. The concrete errors such as truncation
errors were controlled by dividing the space and time meshwidths. To obtain errors
in our calculation smaller than 2 % it was sufficient to divide the space interval to
50 steps. The time steps were determined by expresion (7).
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IV. RESULTS AND DISCUSSION

Using the difference method we have solved first the cataphoresis equations for
the stationary glow discharge, because these results could be compared with theijr
analytic solutions [6, 7]. Our results obtained by the numerical way are practically
identical with the analytic results.

In the cataphoresis studies it Is important to know the admixture atom
distribution in the steady state, i.e. after a long time. All the following results of the
steady state distributions are referred to the end of the afterglow period. For the
interpretation of the time dependences of the admixture atom densities at the
electrodes it is useful to use the time constants of the cataphoreis t,,. In this paper
the time constant of the cataphoresis ,, is the time when the admixture atom
concentration attains the value of 0.63 % of the value (N, — 1) ; N, is the admixture
atom concentration at the cathode in the steady state.

In the calculations we have used the normalized duration of the discharge pulse
7. =K, Az, the normalized period of the pulsess 1, = K,At, where K, K, are
nature numbers. If these numbers are changed in the intervals K e (1; 60),
K, € (2; 120) with the ratio t/t' =1,/tr,=K,/K, constant, the resulting gradient of
the admixture atoms slowly decreases if K, and K, simultaneously increase. For the
limiting values of K, K, from our used intervals and at the ratio K,/K, = 1/2, the
calculated steady state concentrations at the electrodes differ by less than 1 %. The
extreme values of these constants were not examined. In all the following results
K, =40.

In Fig. 1 there is shown the steady state distribution of the admixture atom
density along the discharge tube between the cathode and the anode. It is seen that
the gas separation is directly proportional to the pulse duration. The resulting
profiles are exponential with the parameter a.,=at/t':

N(n, ©)=N. exp {—a.n), (10)

where N, is the concentration of the admixture atoms at the cathode. Then the -

value of N, can be determined from a mass balance equation:
1
u2n+25% exp {~aym}dn+eN. exp {~a,}=1+6 +¢ . (11)
0

The solution of Eq. (11) gives:

N, Hlifﬁmllv. (12)
S+eexp {—a.,)+—LP {zay
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Fig. 1. Steady state distribution of the admixture  Fig. 2. Uozw:x of the admixture M:MBm aﬁ hrm
atom density along the discharge tube for various n.mz_oan (full _Emmv and at the ano e (das _n
ulse durations (a =1, =¢=1). lines) as a ?:&5: of time for various pulse
P durations (¢ =1,6 =¢=1).

The values of N, calculated from Eq. (12) for various Q. are in good mmﬂoo.BQ:
with the values N, obtained by the numerical method, small differences are in the
third significant digit. N . .

It is interesting to note that the resulting composition of the mixture is the same
as the initial one, at the distance 7 =0.42 — 0.49 from the nm.ﬁroao for various
pulse durations (Fig. 1). This result may be obtained also by using Eq. A He. The
coordinate 7, of the point where the composition is unchanged satisfies the
following equation:

N, €xXp A|Qn§3_v”~ . AHMV
This equation gives:
— N (14)
B Aoy

The values 7, were calculated from Eq. (14) for N, obtained from Eq. (12). n,
decreases if a.;, increases (@ =1 =const.) from n, =0.49 (ay=1/10) to n, =042

(ag,=1).
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Fig. 3. Steady state distribution of the admixture
atom density along the discharge tube for various
volumes of the endbulbs (a=3, 7./t =7/8).

Fig. 4. Density of the admixture atoms at the

cathode (full lines) and at the anode (dashed

lines) as a function of time for various volumes of
the endbuibs (a = 3, T,/t,=7/8).

Therefore, from the results obtained by the numerical integration of the
cataphoresis equations in the pulse d.c. glow discharge, we can conclude that the
resulting profiles of the admixture atoms are the same as the profiles in the
stationary d.c. glow discharge with the parameter a.,=art,/t, =at/t'. -

The admixture atom concentrations at the cathode and the anode as functions of
nondimensional time are shown in Fig. 2 for various pulse durations. It can be seen
that after a certain time (nearly the same for various pulse durations) the gas
separation attains the steady state distribution. Then the time constants of the
cataphoresis in the pulse d.c. glow discharge 7,, are determined by the dimensions
of the discharge tube and T. are practicaly independent of the pulse duration.

The ratios 6 and £ can be changed in many ways. We refer our results to the
Q.Hmamom of 6 and ¢ by changing V, and V,, respectively if the volume of the
ammnrmnmo tube equal to ZR?L is constant, or to the changing of the diameter of the
discharge tube R if Vi, Vyand L are constant. The case when 0 and ¢ are changed
by elongating the discharge tube length L is not taken into account, because in this
case also the normalized variables T, 1, a are changed. In Figs. 3 and 4 there are
shown the steady state distribution and the time dependences, respectively, of the
admixture atom densities at the cathode and at the anode for various volumes of
the endbulbs. In the case of T,/T, =t/t' =7/8 the effect of the endulbs is similar to
that in the stationary glow discharge. The steady state kconcentration is decreasing

at the cathode and increasing at the anode, respectively, if the volume of the
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Fig. 5. Density of the admixture atoms at the

cathode (full lines) and at the anode (dashed

lines) as a function of time for various volumes of
the endbulbs (a = 1, 7, /1, = 1/10).
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Fig. 6. Steady state distribution of the admixture
atom density along the discharge tube for various
volumes of the endbulbs (@ =1, /T, = 1/10).
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Fig. 7. Steady state distribution of the admixture
atom density along the discharge tube for various
values of the parameter a(6 =¢ =1, 7,/1, = 1/2).

Fig. 8. Density of the admixture atoms at the

cathode (full lines) and at the anode (dashed

lines) as a function of time for various values of
the paremetera(é =¢ =1, t,/1, = 1/2).
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endbulbs increases. The time constant of cataphoresis is directly proportional to the
quantities 6 =¢. For the short pulse duration ,/t, =1/10, t,, is also directly
proportional to & = ¢ (Fig. 5), but other effects at the electrodes are presented (Fig,
6) in the steady state profiles of the admixture atom density. For 6 =¢> 1 the
steady state profiles are similar to those of the long pulse duration but for smaller
values of § =¢, for example 6 =£=0.02, the derivative of the admixture atom
density profiles at the electrodes becomes low. It seems that the ordinary diffusion
has in such cases a strong influence on this profile.

The effect of the parameter a is the same as in the stationary glow discharge.
With increasing a the final gas separation of the admixture atom density gradient
increases (Fig. 7). The dependences of the admixture atom density at the cathode
and at the anode on time for various a are shown in Fig. 8. The time constant of the
cataphoresis in the pulse d. c. glow discharge decreases if the parameter g
increases.

V. CONCLUSION

By using explicit difference schemes we have been able to solve the equations for
cataphoresis in periodically pulsed d. c. glow discharge. The calculations have
confirmed the assumption that also in a pulse d. c. glow discharge excited in the gas
mixture there exists a gas segregation of gaseous constituents and the created
concentration gradient depends on the pulse duration. This phenomenon is
important in any equipment which uses a pulse d. c. glow discharge excited in the
gas mixtures, e.g., gas lasers, expecially in afterglow measurements.
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