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CAUSAL CORRELATION BETWEEN HELICON
DISPERSION AND ABSORPTION IN PLASMA

JAROSLAV FRANEK*, $STEFAN VEIS*, Bratislava

NPHIUHHA Y CBA3b MEXHY I EJMKOHOBOM AACNEPCUEN
H NOTIOMEHMEM B IIA3ME

AIQRQ.V ?.Somon QS“ the Fourier transformation of which G(w)=
=Gr(®)+iG;(w) has its rea (dispersion) and imaginary (absorption) part
:mo:m_.mﬁoa by the Kramers-Kronig dispersion relations [1]. It means that from the

vice versa. In the n:wmoi paper we shall determine in this way the absorption
causally corresponding to the helicon dispersion in long-wave approximation and
——
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calculate from the dispersion relations the attenuation of plasma oscillations in
non-magnetic plasma.

IL. METHOD AND CALCULATIONS

In the kinetic theory of plasma there are often determined so-called transfer
functions described in linear relation between two physical magnitudes, where one
of them is in causal relation with the other. As an example of a transfer function we
shall introduce the function of the dielectric response in plasma. This function
correlates the external charge, affecting the plasma with the induced charge

2mo(w) =G (0)Qexr(w) . (1

As it can be seen, all the magnitudes in equation (1) are expressed with the aid of
the Fourier transformation and so they depend on frequency. In Eq. (1) the
dependence of physical magnitudes on spatial coordinates is not considered. This
relation can be neglected in the case of the long-wave approximation (k—0). Eq.
(1) describes in plasma the waves known as longitudinal waves of the space charge
induced by the external charge Qexr(®). A particular case of Eq. (1) is when the
induced charge in plasma arises in the absence of the external charge. Such waves
of the space charge are characteristic for the plasma and they are called plasma
oscilations or plasmons.

The real part of the function G(w) describes the dispersion of waves of the space
charge in the plasma and the imaginary one their attenuation. The function of
dielectric response of G(w) is connected with plasma pemittivity by the relation 2]

Glw)=—te—1. @)

Further we shall transcribe this expression for the case of ‘the magnetically active
plasma. It is necessary, however, to know the plasma permittivity in the magnetic
field. In literature there is the following expression in the permittivity of the
electron collisionless plasma for a right-handed circularly polarized wave, progress-

. ing in the direction of the magnetic field 3]

mQﬁSVNHISIA%Mﬂg:lSANVT 3)

Z=(w—|w. )| k| VaTIm

@, — plasma frequency, 0, — cyclotron frequency, k — wave vector, ¥ —
Boltzmann’s constant, T — temperature, m — electron mass. In long-wave
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approximation there js 7 >1 and the function W(Z) can be expressed by the
following series

s@um/\msinmsml.ww,ww... @

It can be seen that W(Z) converges to zero with increasing Z and the Eq. (3)
obtains the simplified form .

S~ |
=1——%

e(w) w@—la]): (%)
This mxvnmmmm.os of e(w) is frequently encountered in the literature in description of
the propagation of circularly polarized low-frequency waves in magnetically active

helicon dispersion. Our fina] task is to determine absorption, i.e. the imaginary m.m:

of G(w) from the helicon dispersion Gg (w). On substituting (5) into (2) we obtain

for the real part of the transfer function .
2

. Il eu = En
: Q%v:%fg, ©

where
1
E~<~"MA—Sahuﬂ (EW!TA.SWVu S~AOAS~ -

;w expression .Qx (w) for dispersion will be a basic relation to determine the
:m:oo:. absorption Aev. The integral correlations between - dispersion and
absorption, consequences of the principle of causality, have the following form [1]

1" Gr(0')dw’

7). o r=Gi(w) (74)

L[" Glw)do G () . (3A)

T)w -0

relations [2].

L[~ G { Ndw’ ’
lwﬂ.\* = wcv L =Im X Res. function IAE (7B)
- 0 - 0'—w

on the real axis
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L [" G(o)dw'

T)w o —w

=Re X Res. of function E (3B)
. W' -
on the real axis

_The horizontal line across the integral sing in Eq. (7) and (8) means that the main
values of integrals are to be considered. On the right-hand side of Eq. (7B) and
(8B) are the imaginary and the real part of the sum of the residua of the
functionG(w')/(w’ — w), resp. It follows from the text that Egs. (7A) and (8A) are
special cases of Egs. (7B) and (8B). The number of the residua summed up on the
right-hand side of Egs. (7B) and 8B) depends on the selection of . As it can be
seen of Eq. (6), Gk (w) has two poles on the frequencies w, and w,. The number of
poles of the function G(w)/(w' — w) s therefore equal to three in a general case. In
the special case w = w, or @ = w, the number of poles is reduced to two. Further, it
will be clear that just these particular cases are of extraordinary importance.
Presuming that G, (w) is known we can calculate the left-hand side of Eq. (7B) and
the right-hand side of (8B). It is to realize that the real part of the sum of the
residua of the function G(w')/(w'~w) is equal to the sum of the residua

=(@')/(w’ —w). The right-hand sides of Egs. (7B) and (8B) can be written as
follows -

Im 3 Res. function @SIV on real axis =3 Res. E 9)
W = 0'-w

Re X Res. function QI\ASIV on real axis =3 Res. m%'v . (10)
@ —w o' -

On substituting (;1) for Gz (w) we find that the expression in Eq. (10) is equal to
zero not only in a general case but also the main value of the integral (8B) is always
equal to zero. By calculating the integral in Eq. (7B) we obtain various cases

l.w*s Grl@)dw’ _ o o Gi@)_, 0o, (1)

T ) . ' —w B () Rl ()]

L7 Glw)de' g Gi@) (12)
] o' —w, @ —w,

L[ Gelode' _ o p o Gi@), (13)
T ) 0 —w, W —w,

For constructing the function G,(w’) we fit the equations (11)—(13) and the
Dirac d-function can be applied. Its properties secure the zero value of Gi(w)
except at the points w, and w,, which ais in accordance with (11).In (12) and (13)
we obtain the sum of two residua, where the larger is always the one correspoding
to a pole of the second order. The absorption G,(w') can be expressed with the aid
of the Dirac §-function in the form

Gi(o)~d(@ -w)-8(0w' -w,). (14)
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In such a way helicon absorption is defined, except the multiplicative constant,
.~u0n %8::5:& this constant we can use the rule of the f-sums. We apply the ryle
in the form [3]

l\.s w’ Im TQH&L do'=7aw} | (15)

oo
where w,is plasma frequency.
Comparing Egs. (2) and (15) it can be seen that in our case the rule of the f-sums
can be written as

— ©0'G(w') do’ = nw? . (16)
From mzw follows directly how to select the constant, not defined yet, in the
expression of the helicon absorption and to transcribe Eq. (14) into the final form
Tw? , ,
= NEAE —0)-8(w'—-w,)]. a”n

;-

Gi(w')= -

HI. DISCUSSION

The helicon dispersion given by Eq. (6) and the calculated absorption, expressed
by Eq. (17) are causal, correlated by the Kramers-Kronig dispersion relations and
fitting (7B) and (8B).

The described procedure for determining the helicon absorption, based on the
correlations (7B) and (8B) was proved on non-magnetic collisionless plasma. For
the real component of ,vo_.B:niQ of such plasma the known correlation is valid

&r(w)=1-ww’ (18)

and for the function of the dielectric response, given by Eq. (2), we obtain

2
ev
2

w'—w?’

Gr(w)= (19)

The imaginary part, corresponding to this real part of G(w), calculated from
(7B) and (8B) is

Gi(@)= "2 [5(w ~0,)~3(a +,)]. (20)

With the aid of absorption, expressed in such a way, we can construct also the
?oa:o:.n% dependence of energetic losses in plasma. These losses are given by the
expression — o Im [1/¢(w)] [3], but in our case

1

lS:: Fagn —wG(w) . (21)
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The result we obtained is in accordance with that given in [3] from where also
Fig. 1 is taken showing the frequency dependence of losses in plasma. The full lines
in Fig. 1 correspond to a long-wave approximation and are in accordance with our
results (20) and (21), respectively. The dashed line represents the short-wave case
when k >k, (k, — the Debye wave number). In this case the losses are caused by
the Landau attenuation. If we knew the dispersion Gy (w, k) from the Kra-

k<<ky k<<k,

Fig. 1. Spectral energy loses dependence of longitudinal waves in plasma. Taken from [3].

mers-Kronig relations, we could determire the Landau attenuation, too. It is to be
noted, however, that the Landau attenuation fits the rule of the f-sums (15) and
(15) as well as G;(w) given by (17) and (20). It means .that the areas in Fig.
1 bounded with full lines and the frequency axis are equal to the area under the
dashed line expressing the losses due to the Landau attenuation. The fact that in
a long-wave approximation the Landau attenation does not appear is comprehen-
sible as in this case only the particles with infinite velocity are attenuated by the
Landau attenuation.
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