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Letters to the Editor

HOMOGENEOUS OMNES-MUSKHELISHVILI
EQUATION WITH INELASTIC UNITARITY

OJHOPOXHOE YPABHEHME OMHECA-MYCXEJXHHBWIN
C HEYIIPYTON YHUTAPHOCTBIO

DALIBOR KRUPA¥, Bratislava

,E_.n procedure .mm found which leads to infinitely many inhomogeneous Omnés-Muskhelishvili
equations for the Em: form-factor, incorporating the inelastic unitarity condition. All these eqiations
can be transformed into a homogeneous one.

Using the m:m_v.:.n properties of the pion form-factor F(s), where s is the square of the momentum
transfer, and assuming at most one subtraction for F(s), we have the dispersion relation

Im F(s') ds’
s'(s'—s—ig)’ m

§ -
F(s)=1 +M \. 3
In Eq. (1) we can substitute for Im F(s) from the unitarity relation
Im F(s)=h*(s)F(s)+0(s), s=4a° )
where

\th":@v nM::I i 3)

is a:.w I=7 = 1 partial wave 5zt scattering amplitude with the real parameters 5(s) and &(s) representing
w—.ﬁ Eﬂwmcn_.ﬁw and :.ﬁ phase shift, respectively. o(s) represents the inelastic contribution from the
&._—on. mass intermediate states, o(s) # 0 for s = 164 In this case, the combination of analyticity and
unitarity _nnam.E the inhomogeneous Omnés-Muskhelishvili (OM) equation for the form factor {1]
>=.m:n_.=w=<n way in formulating the OM equation is to substitute for ImF into Eq. (1) one of ::.w
following expressions derived from Eq. (2) {2]. .

) ImF =tan a, ReF +x, =12 4)
where

Imh Imo
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and the solutions to the OM equations are of the form

In. Ws x..QQoOmn.?g ,.I
For=rio {142 [ R s s o 12 ©

where

Fi@=emp {2 [ 28— @

W S'(s'—s—ig)

is the Omnés function corresponding to the phase a,(s). Here it is the term % (s) from Eq. (4) which is
responsible for the inhomogeneity of the OM equation.

The purpose of this note is to show that besides these two equations there can be formulated
infinitely many equations of the inhomogeneous OM type incorporating the inelastic one channel
initarity condition for the form factor, and to show that these equations can all be reduced to the
homogeneous OM equation, which is easier-to solve and which uses as an input only the phase of the
pion-pion scattering amplitude and the phase of the inelastic spectral function o(s).

It is quite natural to ask whether Egs. (4) for i =1, 2 are the only possible ones expressing ImF in
terms of ReF. In order to answer this question we shall first caliculate F(s) from the unitarity. Eq. (2)
represents the set of two linear algebraic equations in which six quantities ReF, ImF, Reh, Imh, Reo
and Imo appear. We thus have two constraints acting on these six quantities and therefore, any two of
them can be expressed in terms of the remaining four. For the form factor we then have

Reh Rea + {1 —Imh) imo

Ref = Imh — R : ®)

Reh Imo + Imh Rea
ImF = Imhk — A 9

providing that h(s) does not obey the elastic unitarity relation
Imh#* |h{?, (10)

which is true for g(s)#0, s =16p°.
Thus, in the time-like inelastic region we can directly calculate the pion formfactor F(s) from (s) and
o(s) by means of these algebraic equations'), while in the elastic region (=0, 7= 1) the unitarity
enables us to calculate only the phase of the formfactor but not its absolute value.

For the phase of F(s) we have

Reo Imh +1mo Reh
Reo Rek +Imo(1 —Imh)’

tana, = s=16u> (1)
This equation defines the phase of F(s) in the inelastic region. However, by taking the limito—0,n— 1
we find that mk

i == s <16p7,
_._H_S:F_ Rek tan §, 4u’=<s “ (12)

n-=1

which is consistent with elastic unitarity and we can write the phase of F(s) as a,(s) in both the elastic
and the inelastic regions.

'} During the preparation of the manuscript we have learned that Pham and Truong found a similar
algebraic expression for the form factor, however, in terms of o €* and n {3).
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Thus
ImF =h%F =tan a, ReF, s =42, (13)
where
a* .
ho=h+ Fr=csina, (14)

and Eq. (13) is also of the form of Eq. (4) (with i =0), only now x,=0. This means that instead of the
inelastic unitarity (2) we have now an equivalent formulation which looks like the elastic unitarity (Eq,
(13)) but with a new “effective” amplitude ho(s ), which in the elastic region is identical with the elastic
amplitude k(s). Therefore the standard procedure leads to the corresponding OM equation of the
homogeneous type, (since x,= 0) with the solution F: °(s) given by Eq. (7) with a,(s) from Eq.(11) and
this solution is equivalent to the solutions given by Eq. (6).

Having in mind Eqs. (8) and (9) we can find arbitrarily many expressions for ImF of the form of Eq.
(4) and therefore also arbitrarily many equivalent inhomoneous OM equations. We have freedom to
choose for tg @,, i =3, 4, --+» €tc. any function containing some of the four quantities Rek, Imh, Reo
and Imo, % is then given by Eq. (4) in this way:

_Reg(Imh —tan @, Reh) + Imo[Rekh — tan a,(1-Imh)] - (s)
N Imh —h[?

x-.

or vice versa, we can choose for % and calculate tan o, . Fortan g, , i = 1,2wegetx,i=1,2o0f Eq. (5).
It is obvious that for tan a, the corresponding x,=0.

The solution of the OM equation, where ImF is given by Eq. (4) with i#0, 1, 2, is of the following
form:

mavuoxv*ah;& Ofs’) ds- wnxu ﬁwhn o(s) ds” Mx (16)

s W2 S'(s'—s—ig) T Jiou? 8'(s' ~5 ~ig)

s (= %(s') cos a,(s') ds’
LIL:N _3._3a..E_%.JLL

where the first exponential defines Fi(s) and the second defines o(5); (i=3,4,5,..).

Hence, for ImF we have infinitely many different expressions of the form of Eq. (4) and there
correspond to them different formulations of the OM equation, as well as different forms of solutions to
these equations, which are, however, mathematically all equivalent. The solution for any particular case
is easily obtained from this general form of solutions (Eq. (16)). For instance if we choose a, =0, then
% =1ImF and we get the solution in terms of the Omnés function for the phase d(s) along the elastic cut
and in terms of the dispersion integral with ImF over the inelastic cut. Or, if we require for the phase
a,(s) to be equal to the phase shift 6(s) in the elastic region, i.e. we choose such phase a,(s) that

limtan g, =tan §,
a—l}
el

4u’ss<léu?,

then the solution given by Eq. (16) goes over to the solution given by Eq. (6).

Let us note that in order to find the phase a,(s) we do not need to know the whole complex function
o(s), the knowledge of the phase of o(s) is sufficient.

Eq. (11) can be rewritten in the following form

+ 1-t t
tan Q:Hlfhlﬁ—-:ﬂ.. nd =tan (a,+w) _I_hw_.n. an @ 17)
1+ tan a, tan w 1+ tan a, tan w
Imh ImA
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where @(s) is the phase of the inelastic term o(s), i.e. o(s)=]|o(s)| exp iw(s). min.n (1 |:.=w.v_:=5
never equals — 1, it follows from there that a, can never be equal to a, + o, except in the trivial case
=0.

s_.”_ ﬁﬂ_m_ way the phase of F(s) is directly related to the phase of h(s) and to the phase of o(s), and the
knowledge of a,(s) and w(s) permits us to determine the whole formfactor F(s). 4

The existence of various equivalent solutions gives us freedom to use the most oo=¢..n=_n=~ de: the
physical point of view. For instance, in [2] it is noted that because o.m the stange behaviour o.n a, in the
resonance region the formula with tan a, is practically less o.o=<n=_a=. :..»: the 3:::._» with .B: a,.
Moreover, the trouble with the concrete calculation of F(s) is that o(s) is .:on known in practice and
different assumptions and approximations for o(s) arc used. It may happen in future that we shall have
at least some partial knowledge of o(s), say, we might get the data oa_w.o: the vr.wmo of .QQV or only on
the real or the imaginary part of o(s), and then the existence of various solutions will enable us to
choose the most appropriate in order to calculate the pion form factor.
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