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ZEROS OF FORWARD = p AMPLITUDE
AND LOW ENERGY PARAMETERS

ANNA NOGOVA*, Bratislava

The location of zero of forward #~p amplitude is calculated by the method based on -
the statistical approach of the representation of data by analytic functions. The result
differs slightly from the value obtained previously by a different method. The correlation
between the values of scattering lengths and the position of zeros is. discussed.

HYIb z~p AMIANTYIbl PACCEAHMA BIEPE]
H HU3KOIHEPTETHYECKHE NINAPAMETPHI

B pa6ore naiiieHb! DONOXEHHS Hyleil T~ p aMIUTHTYAbI paccesiHhA BOEPEN Ha OCHOBE
METOJa, MCIOAB3YIOLIEN0 CTATHCTHYECKHMI NOAXON K HPCACTABAEHHMIO J2HHBIX C TOMOIL-
bI0 AHAIHTHYCCKHX YHKUMA. Pe3ynbTaT HECKONBKO OTHHYAETCs OT 3IHAYCHMH,
TIONYYEHHBIX paHbllle € NOMOWLIO APYroro Meropa. OOCyXpaeTcs CBA3b MEXRY
3HAYCHMAMH [UIMH PacCEesiHUA M MOJIOXKEHUAMH HYyMEH.

L INTRODUCTION

'The analyticity of the scattering amplitude is one of the most frequently used
tools in high energy physics. The analytic structure of the amplitude, its sing-
ularities and asymptotic behaviour characterize in a well-known way the scattering
processes. The direct consequence of the analyticity — dispersion relations helps us
to get some information about the scattering amplitude, especially its real part.
When the standard dispersion method is used for the forward amplitude f(E), we
have to know the singularities and the behaviour of the amplitude at E-—> o,
However, in some cases it is more suitable to apply dispersion methods to the
logarithm of the amplitude. Then the knowledge of the position of zeros is of great
importance, since the zeros od the amplitude are singularities of the logarithm. So
far the zero positions were calculated by Jorna, McClure [1] for the 7~ p forward
amplitude and by Dumbrajs [2] [3] for the K*p, pp, pp amplitudes. They have
used the method of phase contours. Theoretically, the relation between the number
of zeros and the behaviour of the phase at the threshold and infinity was
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aoaq.im:oa by Sugawara and Tubis [4] via the phase representation. If the
amplitude behaves as E* at E— oo, then the number of zeros is given by

1
N=Pta+[8(=)=6(1)]- L [o(~ o) - 5(- 1)), 1)

where P is the number of poles and 9§ is the phase of the amplitude. The same
relation can be obtained immediately using the principle of argument as shown by
Zamiralov and Kurbatov [5]. For the case of the x~p forward amplitude they
get the final result .

1
N-=P_+—[6.(~1)~6_(1)]. )

This formula does not depend on a and is valid even if the amplitude behaves as
some power of the logarithm at E—s co.

Since P=1 (nucleon pole) and the data give 6_(1)=0 and 6_(— ) =x, the
number of zeros of the forward 7" p amplitude is equal to two.

The result of Jorna and McClure shows that the zeros are located near the
treshold E=1 and therefore the zero position is greatly influenced by the low
energy parameters. .

Recently there have been several discussions concerning the scattering lengths of
the #N amplitude (6], [7).

In :.;m paper we shall evaluate the location of zeros using different sets of
scattering lengths. The result obtained will be compared with that of Jorna and
McClure [1].

We .m:m: use a different method which can be shortly characterized in the
.3:025« way: i) data are treated statistically; ii) as an input we use only
Eﬂoﬂo_mmon_ experimental data and we do not need any hypothesis regarding the
asymptotic behaviour ; iii) an error estimate is given. The method will be described

briefly in part II. In part III the results will be presented together with the
concluding remarks,

II. METHOD

We shall consider the forward 7 p amplitude in the complex E-plane (E is the
laboratory energy of the pionin hA=c=m, =1 units.) It has two symmetric cuts
along the real axis (1, »), (—=, —1)and a pole at — 1/2M, where M is a nucleon
mass. Because of real analyticity fAE)=f*E*). In addition, the amplitude
satisfies the crossing relation

f-(=E*)=f1(E), 3

where f,(E) is the forward 7*p amplitude. In order to determine the location of
zeros we shall work with the function
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1
F_(E)=——. 4
E) =15 @)
The zeros of f_(E) are poles of F_(E) and vice versa, so that we can use method [8]
to find the poles of F_(E).
The analytic structure of F_(E) is the same as that of the f-(E), except for the

-nucleon pole at —1/2M. Instead, it has two complex conjugate poles correspond-

ing to zeros of f_(E).
We map the whole E-plane onto the unit disc using the following mapping

_V1+E-Vi-E )
SVITE+VI-E

The cuts (1, »), (— o, —1) are mapped onto the unit circle €.

In the E-plane we have the following experimental information along the cuts :

1) In the region from the threshold up to E = 1.226 we use the effective range
approximation ¢**' cotg §, HW. In calculating the forward amplitude we take S-

(]
and P-wave contributions. The values of the scattering lengths will be taken from
different sources and the results will be compared. This region is mapped onto the
arc (0°, 34.8°) in the z-plane. .

2) The interval from E = 1.1226 up to E = 19.986. Here the values of F_(E) are
calculated from the Saclay [9] phase shift analysis. In the z-plane it corresponds to
arc (34.8°, 87°).

3) The rest of the right-hand cut E = (19.986, ©) is mapped onto the arc ¢ =
(87.1°, 90°). The imaginary part of the amplitude can be calculated from the data
on the total cross section [10], via the optical theorem. The real part is determined
from the measurements of ¢ =Ref/Imf [11] with the help of the Coulomb
interference. The number of data points is 18, so that the density of data along this
part of the circle is even higher than in the phase shift region.

The left part of the semicircle @ = (77/2, m) is covered by the data on f.p in
a similar way. .

Because of real analyticity the lower part of the circle is a complex conjugate of
the upper part.

Following [8] we construct Qx coefficients

-1 4$YQ@),.
KINNH QANV Z AQNV“ AOV

where Y(z) is a smooth interpolation of data points and g(z) is a weight function
constructed from experimental errors. (For details see [12]). As shown in [13] O«
are Gaussian random variables with the mean
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_1§F@) .
Q=g § 28 2 ax). ™

-
F(z) is a function analytic inside the unit disc except for two symmetric poles at
z=1 and z=2*,
Thus we can write

F(z)= ny o o at
() MPN g
The quantity
R N N
&PHM _Oxlaz_un..M |Q« —2Re ar P 6]

has the chi-squared distribution with N degrees of freedom. The values @, A are
calculated by minimizing (8). <

HI. RESULTS

.;o number N in (8) was taken equal to 30. One can take even a lower N since
starting from a certain value (N~5) x* is independent of N.

The results are listed in Table 1.

The second mwa the third column gives the values of the real and imaginary part
of the zero position. The value obtained in [1] is E=0.946 +i 0.669.

Tabie 1

Data on scatt.

lengths Er *E xIN
Pilkuhn {14] 0.963+0.018 0.665+0.02 1.189
Bugg et al. [15] 0.967+0.015 0.663+0.02 1.193
mm..Enz.:nw_nn [16] 1.00 +0.002 0.665+0.003 1.061
I.o_._n_. {6] 0.953+0.127 0.664+0.05 1.228
Lichard [7} 1.101+0.03 0.633+0.02 1.128

IV. CONCLUSIONS

i) As seen from the Table 1 the real part is higher than the one obtained

ﬁww%o:m_w [1]. The value which deviates most (Samaranayke) gives the lowest
X’/N.

However, the results obtained from Bugg’s or Héhlers scattering lengths could
be more reliable since their calculation is based on more recent and accurate data
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[17]. The point is that the Saclay data which we have used in the region E =(1.12,
19.9) may not be consistent with analyticity when combined with the low energy
values based on different analysis. One can conclude that the present data give the
real part of the zero position between Eg = 0.95 and E,, = 1.1. The imaginary part
is E; ~0.66.

ii) One of the aims of this paper was to test whether the method which was
originally used to determine the singularities of the A., resonance [8] and the nx
resonances [18] is able to detect the zeros of the forward amplitude. The above
example of ™ p zeros shows that the method gives even more reliable results, since
we have no problems with left-hand cuts and high energy behaviour as in the case
of the 7N partial amplitude.

One can expect that the method can successfully work also in determining the
zero position of other amplitudes, including the case of fixed ¢ different from zero.

I would like to thank Drs. J. Fischer, J. Pi§it and P. Lichard for valuable

discussions and comments.

REFERENCES

[1] Jorna, S., McClure; J. A.: Nucl. Phys. B 13 (1969), 68.

[2] Dumbrajs, O. V.: Nucl. Phys. B 38 (1972), 600.

[3] Dumbrajs, O. V.: Nucl. Phys. B 46 (1972), 164.

[4] Sungawara, M., Tubis, A.: Phys. Rev. 130 (1963), 2127.

{5] Zamiralov, V. S., Kurbatov, A. F.: J. nucl. Phys. 23 (1976), 900.
[6] Hohler, G., Jakob, H. P., Strauss, R.: Nucl. Phys. B 39 (1972), 237.
[7] Lichard, P.: Acta phys. slov. 26 (1976), 152.

[8] Nogova, A, Piit, J. Presnajder, P.: Nucl. Phys. B 61 (1973), 438.
[9] Ayed, R, Bareyre, P., Lemoigue, Y.: preprint CEN-Saclay, 1972.
[10] Carroll, A. S.: Palermo Conf. 1975

Foley, K. J.: Phys. Rev. 19 (1967), 330.
[11] Foley, K. J.: Phys Rev. 181 (1969), 1775;
Agkenbrandt, C.: FERMILAB Conf. 75/61 — EXP.

[12] Nogovai, A, Pisit, J.: Nucl Phys. B 61 (1973), 445.
[13] Pdzman, A. et al.: Nucl. Phys. B 64 (1972), 637.
{14]) Pilkuhn, N. et al.: Nucl. Phys. B 65 (1973), 460.
[15] Bugg, D. V. et al.: Phys Lett. 44B (1975), 278.
[16] Samaranayke, V. K., Woolcock, W. S.: Nucl. Phys. B 48 (1972), 205.
{17] Bussey, P. J. et al.: Nucl. Phys. B 58 (1973), 363.
[18] Bohagik, J., Kithnelt, H.: Viena preprint, March 1977.

Received September 1™, 1977

165



