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HOMOGENEOUS AND ISOTROPIC HARD SPHERE
MODEL OF NON-CRYSTALLINE SOLIDS

PETER MRAFKO*, Bratislava

The Bernal-Mason-Finney algorithm for the numerical simulation of dense random
packing of hard spheres as a model for the structure of amorphous solids is discussed.
A very efficient and vast variant of this aigorithm is described in detail. The constructed
model was analysed and has been shown to be fairly homogeneous and isotropic in the
sense that no angular dependence of the pair correlation functions is observed. The
computer simulation using this method promises well to help understand metallic glass
structures. g

OJHOPOOHAS H H30TPOITHASA MOJENb TBEPABIX MAPOB
JJIs HEKPHCTAJUIMMECKUX TBEPABIX TEN

B paGore obcyxpaetcs anropudM Beprana-Macona-®uuHEs 1S YHCIEHHOTO
MONIC/IHPOBAHHA IUIOTHOH CNy4adHO# YNAKOBKH TBEPALIX WIAPOB, KOTOpas CAYKHT
MOJENBIO ANIA CTPYKTYPbl aMOP(RHBIX TBEPABIX Tel. JleTansHO ONKCHIBAETCH OIMH OY€EHb
3QGpeKTHBHBIA ¥ GLICTPLI BapuadT 3Toro anropudma. IIpefnoXcHHAd MORENb
NPO2HANH3IMPOBAHA W [IOKA32HO, YTO OHA (PaKTHYECCKH ONHOPOJHA M M30TPONHA B TOM
CMBICTE, YTO HE HAGNIORAETCA YINOBOH 3aBUCHMOCTH (DYHKUMI HapHBIX KOppeNsiHA.
Monenuposanue Ha CYETHO-BBIYMCIUTENBHONA MalIMHe, HCHONbL3YIOUICE 3TOT METOL,
H2ET BO3MOXHOCTh B GyAyLIEM NOHATHL TAKKE CTPYKTYPY METAIIHYECKHX CTEKON.

L INTRODUCTION

Metallic glass alloys are an important new class of materials and research into
them appears to be entering a stage of exponential growth. One of their most
fundamental characteristics, their atomic structure, remains among the most
elusive. A certain progress in understanding the arrangement of atoms in metallic
glasses has been made by the development of methods of structural modelling.
Models of non-crystalline aggregates can be built both in the laboratory and on
a computer. The construction and study of physical assemblies is extremely
laborious and the accuracy is limited. Computer simulations, especially computer-
-simulated dense random packing of hard spheres have shown good promise as
zeroth-order representations of the atomic structure of metallic glasses and
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additional data processing procedures, such as energetic relaxation, give a good
first order approach.

Most procedures which have been used to build hard-sphere models are
sequential. Such is the method of Bennett [1], where each sphere is added
successively to a previously existing tetrahedral site. The choice of a site can be
varied, which leads with various boundary constraints to a lot of models similar in
nature [2, 3, 4, 5, 6]. Once a sphere has been added, it is not moved further
— a collective rearrangement is ruled out. The effective potential is a centrally
acting gravity. Radial distribution functions are similar to the experimental ones.
The density or packing fraction (ratio of volume occupied by spheres to the total
volume) decreases with the distance from the centre of the cluster. It is believed
that this nonphysical property results from the “softening” of pair correlations with
the distance from the cluster centre [7]. Boudreaux and Gre gor [7] have
calculated pair correlation functions depending on some angular parameter.
A strong anisotropy appears and it is proposed that the decrease in the density in
the dense random packing structure is caused by the weakening pair correlations in
the tangential directions. Clearly the packing occurs preferentially above and below
any spherical shell and is insufficient to the sides. To obtain a correct model for
studying, e.g., the alloy composition variation on pair correlation functions, or the
effect of differences between the atomic sizes on amorphous solid formation, this
anisotropic pair correlation and the decreasing density must be eliminated and one
possible way is a modification of the simulation aigorithm.

From this point of view another algorithm is promising. The algorithm used
previously by Bernal [8] and Mason [9] on inadequate computers and recently
more sucessfully applied by Finney [10], the so-called BMF algorithm, which
simulates the compression of a hard sphere gas. In structural models built by using
this method we do not expect density nonhomogeneities, while the only attractive
force is the spherically symmetrical general compression and the collective
rearrangements are allowed. The purpose of this paper is to discuss this method
from the point of view of the calculation efficiency, homogeneity and isotropy of
the constructed model.

II. THE SIMULATION ALGORITHM

The algorithm simulates ‘the compression of the hard sphere gas under free
boundary conditions. The Cartesian coordinates of N points are chosen within
a large sphere by a pseudorandom number generator. Each such points is then
considered to be the centre of a small sphere of diameter d. Alternatively
a threedimensional simple cubic structure with a lattice parameter smaller than d
can be built and the atom positions strongly randomized. Previous methods used
a fairly simple straightforward scheme. If two spheres overlap, they are moved
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apart along the line of centres until they are just touching, irrespective of the
w<olmum that may be created thereby. The computer continues moving the spheres
ina Q&o until all overlaps have been removed (small cycle). Another (big) cycle is
oEmS.oa after increasing the sphere diameter (or after rescaling the coordinates).
Experience shows that the procedure produces clusters of increasing density. The
womﬁ of such a computer simulation is high. Most of the computing time is consumed
in the checking on spheres overlap through the whole cluster. The procedure can be
made more efficient in a similar way as that presented by Boudreaux and
Gregor [7] in the case of the sequential building algorithm. Besides a list of
woo:::m:nm of all spheres a three-dimensional integer map of the structure is held
in the no_.uuﬁon memory (or on the disk files). The map values are created simply
by rounding-off the coordinates of spheres. Interspheres comparison need only be
made between spheres in nearneighbouring boxes of the map. Every sphere is
checked to see if it overlaps only with spheres from the 26 neighbouring boxes and
after moving the overlapping spheres apart the map is partially updated. As a result
of the integer character of the map the procedure is very fast.

When more than one sphere falls in a box of the map, only the first is taken into
the calculations, the other follows in some of the next small cycles after updating
Go map. Also the more complicated four-dimensional maps were checked, but this
simple one seems to be the most efficient from the point of view of the run-time of
the computer. It is easily understood, as then the whole process is preferred in the
area of the smallest density, it is on the periphery of the cluster.

IIl. ANALYSIS OF THE MODEL

The o_cmﬁonm.c:mz up using the BMF algorithm were analysed by Finney [10],
here we restrict ourselves to the problems of homogeneity and the angular
dependence of pair correlation functions only.

II1.1. The packing fraction

As expected the clusters were spherical in shape and centred at the origin. The
packing fraction was calculated for spherical samples with increasing radii cut from
the packing. The actual volume of spheres within these radii was determined by
calculating the volume of spheres totally within the radii and adding the inner
sphere segments of those spheres intersecting the radii. The results for one cluster
of 500 particles are shown in Fig. 1. The packing fraction is calculated after 1, 2,
5 and 9 big cycles. Except for small ripples near the origin the packing fraction is
nearly constant over the cluster and at the edge begins to decrease rapidly.

Ho.&:omamﬁ the angular variations of the packing of spheres four pair correlation
functions have been calculated. Besides considering all the neighbours of every
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sphere in turn, the inward pair correlation function has been constructed by
considering only these neighbours which fall in a cone opening toward the centre of
the model with an appex angle of 39°, the outward pair correlation function uses
neighbours in an outwardpointing 39° cone and the tangential one is constructed
using only those neighbours which are within 6° above or below a plane through the
central atom and normal to a model radius.

0.70 -
0.66
0.62
Q58

0.54

Fig. 1. The packing fraction g of spherical samples of increasing radius cut from the cluster
(after 1,2, 5 and 9 big cycles).
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Fig. 2. Pair correlation functions of the model. Neighbours considered ; a) in all directions — total pair
correlation function ; b) in tangential direction — tangential pair correlation function ; €) in the direction
of the cluster centre — inward pair correlation function.

All pair correlation functions have been calculated over all the 500 spheres in the
cluster and corrections on the surface of the cluster similar to those used by Mason
[12] have been applied. In Fig. 2 there are shown the total, tangential and inward
pair correlation functions. The outward function is difficult to calculate correctly
for such a small model, but its behaviour is similar at least for the first peak. One
can see that the pair correlation functions are statistically similar, in contrast to
results of Boudreaux and Gregor [7] who calculated the same functions for
a model constructed by the Bennett sequential method and they observed a very
strong weakening of the pair correlations especially in the tangential directions.
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The second peak of pair correlation functions is split as it has been observed for
most metallic amourphous solids and the amplitude of splitting increases with the
packing fraction.

IV. CONCLUSION

Random arrangements of hard spheres originally proposed as models of the
liquid state appear now to represent well also the state of amorphous metallic
alloys, since in the regime of amorphous solid formation the interatomic packing is
controlled in principle by two body repulsive forces. This paper has considered the
Bernall-Mason-Finney algorithm for the numerical simulation of dense random
packing of hard spheres. A very efficient and fast variant of this algorithm is
described in detail. The constructed model was analysed and has been shown to be
fairly homogeneous and isotropic in the sense that no angular dependence of the
pair correlation function has been observed.

As the model has no structural nonhomogeneities and no angular anisotropy
which may be very relevant to the real amorphous system, it is suitable for studying
the atomic arrangement of metallic amorphous alloys. The model does not
reproduce the position and relative intensities of the experimental pair correlation
functions better than the others do and there is the problem of embedding the
constructed cluster in a matrix of equivalent structure as a result of the used free
boundary conditions. Nevertheless, because of its homogeneity, angular isotropy
and because the method of simulation seems to represent better the real physical
process occurring during the rapid cooling from the melt than the sequential
building method, the computer simulation using this procedure may help to obtain
an understanding of metallic glass structures, may help in our studies of alloy
composition variations, stability regions of amorphous solids formations etc.

Work in progress at the time of this report includes an expansion of the model to
include two or more sphere sizes and the effect of various atom pair affinities.
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