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SIMILARITY AND SHORT-RANGE ORDER
PARAMETERS FOR LIQUIDS
AND AMORPHOUS SOLIDS

DUSAN KORYTAR*, PETER MRAFKO*, Bratislava

In the paper the pattern recognition method of the information theory has been
adapted to three dimensional disordered structures to compare their short-range order,-
and a short-range order parameter has been introduced. Theoretical results were applied
to the model as well as to the real liquid structures. -

IMONOBHE H INNAPAMETPHI BJIHXHEIO MOPAAKA XA XHAKOCTEN
H AMOPOHBIX TBEPIBIX TEJ

B pa6ore npumenéH MOnndMIMPOBAHHBLIA METOH CTPYKTYPHOIO PacloO3HABAHHSA
Teopuu HHGMOPMALMM K TPEXMEPHBIM HEYNMOPAROYECHHLIM CTPYKTYPaM C HENbIO CPaBHE-
HAs ux GIDKHETO NOPsAKa M BBeAEHUA napaMerpa Giinkuero nopsaxa. TeopeTnueckue
Pe3yNbTAaThl IPHMEHEHBI K MOJENH, @ TAKXKE K PCaNbHbIM XHIKHM CTPYKTYpam.

L. INTRODUCTION

- The crystalline state is characterized by the presence of a short-range as well as
a long-range order. In non-crystalline matter (e.g. liquids or amorphous solids)
o:@ some short-range order (confirmed by the fact that both the interference and
pair correlation functions have only a few diffuse maxima) is present. It is generally
vo_mgoa that the increasing height and sharpness of the peaks are due to an
increased shortrange order. Sometimes, esp. in amorphous structures, it is very
difficult or even impossible to compare short-range orders in various non-crystall-

ine states even if the interference and pair correlation functions are known. It is
therefore desirable to characterize the short-range order by a single parameter. .
. Several attempts have been made so far to define some ordering parameters. For
instance, Frank [1] introduced an ordering parameter for real crystals simply as.
the ratio of the number of atoms in crystal lattice sites to the total .:E:cmn of atoms. ’
Stevels [2] introduced the so-called repeatability number and suggested how 8.;
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calculate it in model structures. A connection with the radial distribution function is
mentioned but no mathematical correlation between them has been done.

A number of attempts to characterize the order of atoms has arisen with regard
to the determination of the degree of crystallinity (e.g. in polymers) by means of
intensity curves measured by X-ray diffraction [3, 4, S].

In this paper we propose to compare the short-range order of various disordered
structures by means of the so-called similarity parameter introduced in the theory
of information for patern recognition. This parameter was used by McLachlan
[6] in a method for testing the presence of a given atomic configuration in some
organic structures. Here, we will introduce the short-range order (SRO) parameter
in a similar manner.

In Chapter II we describe the principles of pattern recognition following
McLachlan and the basic notions and relations of the structure analysis of
disordered systems. Also, various similarity parameters are defined and a precise
definition of the SRO-parameter is given.

In Chapter III the theory is verified by applying it to the Unger model and liquid
He, Cs, and Pb at various temperatures.

IL. THEORY

IL. 1. Pattern recognition

The problem of pattern recognition is a very important one in the information
theory. Most of the information-retrieval systems, the translation of languages, and
the data processing are based on recognizing patterns.

Solving this problem requires to involve a mathematical function which is
capable of expressing the identity of, or the similarity between, two patterns in
a plane. Such a similarity function should recognize any given motif regardless of a)
position in the plane, b) orientation, and c) size (or magnification) (c.f. Fig. 1.).

Next, we shall describe a similarity function which fulfils the requirements a) and
b).

Fig. 1. The pattern A translated (a), rotated (b), and enlarged (c). .
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The pattern in Fig. 1 can be represented by some characteristic function of the
position g(x, y)/(e.g. density, reflectivity, blanckness). It is clear that the quantity
o(x, y) varies when passing from 1a to 1c. We can introduce the autocorrelation o
Patterson function S

>.A:,evumWh .h. o(x,y)o(x+u,y+v)dxdy, Gv

where a and b are the outer dimensions of a single pattern. This ?:omos.mm,.wr.
invariant, independent of the position of the initial pattern. Then we can introduce
the radial autocorrelation function of g(x, y) defined as

c=5 [ Br.®)dO, @

where B(r, ©)= A (u, v) (in polar coordinates). .

The function C(r) is one-dimensional, independent of both position and
orientation of the pattern ¢(x, y). Next, we introduce the cross-correlation D (s) of
two radial autocorrelation functions C(r) and C’(r), derived from the patterns
o(x, y) and ¢'(x, y), respectively. Let

b@nw ﬁ C(r) C'(r +5) dr , | 3)

where R is the maximum radius of the pattern. According to McLachlan [6], .E.o
integral

Su. uwmh D(s) ds @

is a number which has its greatest value when o(x, y) and @'(x, y) are identical,
and it becomes smaller as they are dissimilar, regardless of positioning OF
orientation. .

Now, let us consider Figs. 1a and 1c. If we require the similarity parameter to be
independent of the magnification we must replace the radial Patterson function
C(r) by a magnification independent function. It is sufficient to find how the radial
Patterson function varies with the magnification of a pattern (Fig. 1c). One can
easily ascertain that in order to obtain C.(r) of a k-times larger pattern it s
necessary to enlarge the variable r as well as its maximum value R k-times.- This
means that an appropriate re-scaling of C(r) in r is sufficient even for a comparison
of patterns with various magnifications.
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I1.2. Application to disordered structures

Let us take a real disordered structure for the pattern A of Fig. 1. Itis clear that
the coordinates of the individual atoms (or the actual atomic density function
o(x, y,z)) are not known and even if we knew them, we should not be able to
calculate the corresponding Patterson function because of the large number of
atoms. According to the theory of diffraction by disordered structures, the radial
patterson function P,(r)/V is a Fourier transform of the interference function I(s)
and this relation has the form

sI(s)=2 “s r WM\MV sin (27sr) dr, )
. wvmm =2 ﬁ " sI(s) sin (27sr) ds . 6)

However, this Patterson function is not obtainable from I (s) because the integral of
(6) does not exist. Looking back to Sect. I. we can see that the radial Patterson
function was introduced as independent of translation and orientation of the
pattern. These requirements are fulfilled not only by the radial Patterson function
but by the radial distribution function (RDF) and the pair correlation function g(r)
and g(r)—1, as well. .

The Fourier transform between the pair correlation function g(r)—1 and the
interference function I(s)—1 has the form

s[I(s)—1]=2 ‘_;,n 0olg(r)—1] r sin (2asr) dr , )

rodg(r) —1]=2 % " s[I(s)— 1] sin (27sr) ds , (8)

where p, is the average number density of atoms, s = 2 sin @/A is the magnitude of
the reciprocal space vector s (© and A being the diffraction angle and wavelength
of the applied X-rays, respectively) and r is a distance in real space [7].

The integral (8) can be easily calculated, as the function I(s)— 1 tends to zero for
large s. After a re-scaling (analogical to that mentioned at the end of Section IL.),
the pair correlation function g(r)— 1 will not depend on the size of atoms and can
be used instead of the radial Patterson function. Considering two structures, if we
take g(r)—1 and g'(r)—1 for C(r) and C'(r), respectively, from the square of
their crosscorrelation according to Section IL1., we obtain a number which
decreases with a decreasing similarity between the structures. This similarity
parameter will be largest when o'(r)=o(r).
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I1.3. Short-range order parameter

So far we have considered disordered structures only. These can be gained mo-.

example by disordering crystalline structures. The amount or degree of such
a disorder can be characterized by the method of the similarity parameter,as can be
seen in Section II1.2., where model structures gained by the disordering of a mEG_o
cubic lattice are dealt with.

From the structure analysis and geometrical considerations it is known that a_o,
face centred cubic and hexagonal close packed structures are the most ordered
ones. If we take as the reference function C(r) (the first of the two cross-correlated
functions) the pair correlation function of such a structure and fix the _Eznm of
integration, the resulting parameter will depend only on C'(r).

Let us denote C(r)=g(r)—1 of the fcc structure o(x,y,z) and C'(r)=
g'(r)—1 derived from a model or from an experiment (o'(x, y, z)). Perform
re-scaling so that the first maxima are at position r = 1. Each of these re-scaled pair
correlation functions is invariant of translation, orientation, size of atoms and their
average density.

The cross-correlation has the form

Esuﬁ C(r) C'(r +5) dr , )

where we take R to equal the distance in atomic diameters up to which the

short-range order is being examined (usually from 5 to 10). The normalization
coefficient 1/R from Section IL1. is not used. The similarity parameter SP is
written in the form

SP=S§,, = .ﬁ “ D¥(s) ds . (10)

The larger the obtained value, the more similar the examined structure o' will be to
the fcc structure g¢. The parameter can be useful for disordered structures that have
a tendency to crystalize into a fcc structure (most metals). We denote it as SPrx-
Having used the C(r)=g(r)—1 of a simple cubic lattice, we denote it as SP...
In a similar way we could introduce similarity parameters comparing a given
disordered structure with the other lattices. In order to avoid comparing with the
reference structure, we propose to introduce a mathematically simpler but not so
instructive parameter characterizing the short-range order, simply defining

C(=C'(N=g'(r)-1 an

in a cross-correlation (9). The corresponding S,,. is denoted as the mWO-nH,»Bn-
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ter. It can be considered a result of a mathematical processing of a pair correlation
function as a whole. This single number depends on the number and height of
peaks, as well as on their relative positions.

1. APPLICATIONS
II1.1. Some technical notes

Computation of the similarity parameter (SP) defined in Section I1.3 requires
a pair correlation function g(r) — 1 of a simple cubic lattice (Section I11.2) and of
a face centered cubic lattice (Section I11.3). Both functions can be easily computed.
After generating coordinates of atoms in a sufficiently large area of the fcc latice we
choose an atom near the centre and the distance of all other atoms from this one
and the number of atoms N(r) corresponding to the distance r are calculated.
It is clear that

N(r)y=4nr? go9(r)Ar, (12)

where @, is the mean number density of atoms and Ar is the step by which g(r) is to
be calculated.

Putting R to be the distance up to which the order is investigated, we let
g(ry—1=0 for r greater than R.

In Table 1 the calculated distances r and the corresponding number of atoms
N(r) are shown, by an asterisk are denoted the values of a simple cubic case.

Computation of the SRO parameter is much simpler because it does not need
any special reference function.

Since correlations between atoms in liquid and amorphous states are perceptible
only at several atomic diameters, all integrations were performed with an upper
limit equal to 5 (in atomic separation units).

Table 1

Distances r and the corresponding numbers of atoms N(r)
for a face centred cubic lattice

r 100 141 173 200 224 245 265 283  3.00
N(») 12 *6 24 *12 24 *8 48 *6 36
r 316 332 346 361 387 400 412 424 436
N(r) *24 24 *24 72 48  *12 48  *30 72
r 447 458 469 480 490 500 510 520 529
N(r) 24 48 24 48 8 84 24 9 48
r 539 557  5.66
N 24 96 6
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IIL.2. Unger’s model

The theory introduced in the first part of this paper was tested with a structura]
model of a disordered system of atoms proposed by Unger [9]. We have restricted
ourselves to structures which transform to a simple cubic lattice at a vanishing
disorder. Starting from such a lattice, Unger’s model may be built up step by step

glr) —

g(r)

A=0.050

A=0.075

™~
T
~

0 1 2 3 4 L 0
=t =t
S Az0.100 %% A=0.150

2t 2F

1k +F \/\{I‘

0 T 2 3 r r - 0 1 2 3 4 r—

Fig. 2. The pair correlation functions g (r) for Unger’s model. (a) A =0.050, (b) A = 0.075,
(c) A =0.100, (d) A =0.150. :

by adding further atoms to the existing cluster at random positions in such a way
that the short-range order of the crystal is only slightly disordered. The loss of the
longrange order in such a structure is connected with the increase of distortion as
one proceeds away from the origin site.

Unger obtained a simple analytical expression for the pair correlation func-
tion, namely

1
4700 ik

g(r)=

This formula contains only the adjustable parameter A, which decreases with
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> [f(r—aw, v’ AY) ~f(r + au, e&»ﬁ.. va.

Table 2

Values of the SP,. and the SRO-parameter for several values
of A(a = 0.090).

A SP.. _ SRO
0.050 0.513 525 0.244 099
0.075 0.245 475 0.135 500
0.100 0.149 950 0.105 131
0.150 0.093 147 0.079 031

Table 3

Values of the SP,. and the SRO-parameter for several values
of A (a = 0.095).

A SP,. SRO

0.050 ©0.503 556 0.238 220

0.075 0.241 794 0.133 646

0.100 0.148 288 0.104 217

0.150 0.092 621 0.078 589
Table 4

Values of the SP,. and the SRO-parameter for several values
of A (a = 0.100).

A SP. SRO
0.050 0.494 008 0.232 683
0.075 0.238 258 0.131 880
0.100 0.146 685 0.103 332
0.150 0.092 107 0.078 153

a decreasing disorder (in the o_.v\mﬁm:mno. state A =0). The v* denotes the reduced
width tabulated in [9], ay is the distance of the atom with the coordinates i, j, k
from the atom at the origin, and [ is a Gaussian-like function

2

e =g e (=52). (14)

The pair correlation functions for such structures (for various values of A) are
shown in Fig. 2. Since the author used relatively small groups of atoms, g(r) does
not approach unity for higher values of r but it slowly decreases down to zero. In
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order to suppress this tendency we have imposed an exponential factor exp (—ar?)
on g(r)— 1 which, in turn, lowers the ordering. The eight initial peaks of g(r)—1in
the simple cubic lattice were used as a reference function C(r) in cross-correlation.

The resulting SP,. and SRO parameters for various values of the coefficients a
and A are summarized in Tables 2, 3 and 4. Using these Tables one can see that
with an increasing disorder (increasing a and A) both the SP. and the
SRO-parameter decrease. The magnitude of SP.. is higher than that of the
SRO-parameter.

I11.3. Liquid helium, caesium, and lead !

Mozer et al. [10] published the interference functions for liquid “He at various M
temperatures. These functions can be Fourier transformed to the pair correlation
functions g (r). Brostow and Sochanski [11] found an analytical expression that
fits the g(r)’s. In Fig. 3 two of them (after re-scaling for the first peaks) are shown.

glr)—
g(r)—>

»
T
~
¥

Fig. 3. Pair correlation functions g(r) for liquid “He with a mean density of 0.1528 gem ™
at temperatures (a) 2.05 K, (b) 2.84 K.

Huijben and van der Lugt [12] measured the interference functions for
liquid caesium at four temperatures. The interference functions of liquid lead of
three temperatures were measured by Steffen and Hosemann [13].

We have applied the Fourier transform

L (" klr(k)—1] sin kr dk , (15)

9 =1+ e ),

where k =4x sin ©/1, to their data in order to obtain the corresponding pair
correlation functions g(r). The results are shown in Figs. 4 and 5.
The similarity parameter SP,.. and the SRO-parameter were computed. The
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Fig. 4. Pair correlation functions g (r) for liquid caesium at temperatures (a) 30 °C (b) 65 °C
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Fig. 5. Pair correlation functions g(r) for liquid
lead at temperatures (a) 350 °C, (b) 450°C,
(c) 550 °C. Y 4 .




Values of the SP,. and the SRO-parameter for liquid helium

0 [atA™)] T(K] SPrec SRO
0.0230 2.05 0.123 856 0.097 792
0.0230 2.84 0.128 291 0.101 047

Values of the SPy. and the mwO-uu_.anS_. for liquid ceasium

T[°C] 0o [atA™?] SPic SRO
30 0.008304 0.302 250 0.170 250
65 0.008217 0.273 012 0.159 750
100 0.008129 0.265 639 0.156 375
150 0.008005 0.247 247 0.148 625

Values of the SP;, and the SRO-parameter for liquid lead

T{°C] 0o [atA7?] SP. SRO
350 ‘ 0.0310 0.354 124 0.179 818
450 0.0306 0.323 120 0.171 829
550 0.0310 0.289 829 0.164 501

results are given in Tables 5, 6 and 7. It can be seen that both the SP.. and the
SRO-parameter decrease with increasing temperature.

IV. DISCUSSION

There was published a great number of diffraction data (X-ray, neutron,
electron) for liquids and amorphous solids with a consequent radial distribution
analysis. When comparing the structures, various parameters are taken into
account in order to distinguish their short-range order, e.g. location, the heights
and widths of the peaks of the interference, the pair correlation, and the radial
distribution functions, the mean number density, coordination numbers, and the
packing fraction. This work brings the possibility of a direct mathematical
comparison of amorphous structures with each other, or with the crystalline

structure (SP,. and SP..) and introduces the SRO-parameter which characterizes

the short-range order in disordered structures.

Our method was tested both in model and real structures or liquid omnmEE..

helium, and lead. The parameter SP requires the pair correlation function ¢ (n-1
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of a face centred cubic or a simple cubic lattice as an ““internal standard”, the
SRO-parameter uses C(r)=C'(r), where C’'(r) is equal to the g'(r)—1 of the
considered structure.

The method makes it possible to characterize quantitatively the short-range
order not only for the same material (e.g. caesium at various temperatures) but,
furthermore, it enables to compare the short-range order of different materials
(e.g. liquid lead and caesium). From Tables 6 and 7 it can be easily found that lead
at 450 °C is more ordered than caesium at 30 °C (it has a greater SRO-parameter)
though such a decision cannot be made using the Figures 4 and 5 only. From Table
5 can be seen that liquid helium is far less ordered than liquid lead or caesium are.

In [8] we discussed the possibility of computing the SRO-parameter straightfor-
ward from the interference functions. This is, however, beyond the aim of this
paper.

It is necessary to note that it is not quite evident that the rescaling of the pair
correlation functions for the 1st peak is ?:w correct in connection with their use in
the integral of (9).

In this paper we have considered one-component materials only. However, there
is no problem to extend the SRO-parameter to more-component materials
provided that the corresponding partial pair correlation functions were known.
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