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DENSITY OF STATES OF A PARTICLE
IN THE GAUSSIAN RANDOM POTENTIAL

PETER NAGY*, MILAN OZVOLD?*, Bratislava

Approximate methods are used for the calculation of the density of states of low-lying
bound states of a particle in the Gaussian random potential with the Gaussian
autocorrelation function. One of the methods utilizes the prognosis for the potential wells
in the framework of the correlation theory. The other method derives the density of
states using Bezdk’s statistical sum. Both methods give the same density of states in the
deep energy tail where the quasiclassical results do not longer hold. The most general
expression here obtained for the density od states holds for energies E < — 5, where n?is
the mean square potential fluctuation.

INIOTHOCTL OOHOYACTHYHAIX COCTOSHHUM
B CAYYAWHOM TFAYCCOBCKOM NOTEHHHANE

B paboTe jnst BLIYHCHECHHS NUIOTHOCTH HHU3KONEXAIMX CBA3AHHAIX OFHOYACTHYHBIX
IHEPreTHYCCKHX COCTOSHMIA B CIYYalHOM rayCCOBCKOM MOTCHUMANE € raycCOBCKOM
ABTOKOPPENALUMOHHOR (PYHKIMCH HCTIONb3YIOTCH NPUGAMKEHHBIE METONLI. OIHH H3 3THX
METOJIOB HCMOAL3YET NPOTHO3 ANIsl MOTCHUMANBHBIX AM B PAMKaX TEOPHH KOppensiumii.
Bropoil METOX BLIBONHT NNOTHOCTH COCTOSIHMH, MCHONb3yS CTATHCTHYECKYIO CYMMY
Besaka. OGa MeToNia AIOT OAHY ¥ TY XK€ NIIOTHOCT COCTOARMI TNYGOKOIHEPreTHUECKO-
TO XBOCT3, [ie YX€ HE MMEIOT MECTO KBa3HKIACCHUECKHE pe3ynbTaThl. Haubonee o6mee
BLIP2XEHHE VIS IIOTHOCTH COCTORHHH, KOTOPOE HOJNYYEHO B paGoTe, HMEET MECTO ISt
suepruit E < — 1, rpe n° npeacragaser co6oit cpeHEKBAIPATHYHOE 3,E_o=o==n NOTEH-
nuana.

L. INTRODUCTION

Recently one of the authors of 1] has presented an approximate method for
calculating the density of states (d.s.) in the low energy tail of a particle in the
random Gaussian potential. This method differs from the minimum counting
method of Halperin and Lax (HL) {2] in that the optimal potential wells are
replaced by the most probable wells. In the framework of the correlation theory,
the best function prognosis (extrapolation) for the homogeneous random function
V(r), if we know its value at a point r,, is
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V(r)=V(r,)) W(r—r,). (1)

The function .$Anl r,) is the autocorrelation function divided by the mean square
fluctuation 77, i.e.

(V) V(o)) =n*W(r—ro) Q)
(V(r)) =0.

In this paper we apply this method to the particle in the Gaussian random potential
V(r) with the autocorrelation function

. . r— —.- 2

W(r—r')=exp AI{V 3)

This problem was solved by Bezék [3] in the limit of the large correlation length
L using Feynmans’s path integrals. He supposed that the autocorrelation function
may be approximated by
2

r

,S\A-.v =1— E 4)

and he found the averaged density matrix.

By means of the approximation (4) with the statistical prognosis (1) the problem
reduces to the solution of the Schrodinger equation of the particle in the parabolic
potential well. As the solution of the problem is well known, d.s. can be found by
the method [1] analytically.

Since Bezék [3] also used some auxiliary approximations, he derived d.s. in Sn
energy region

21" ©)

— 4/3
E>-n T%

only and showed that the condition (5) gives the region of <w=ﬁ.=.€ of 9.@
quasiclassical approximation (see e.g. [4]). The exact form of the partition sum is
derived in [5] by means of infinite products. The compact analytical form of the
statistical sum has been found independently by Barta [6], and Papadopoulos
{7] and Drchal and Masek [8].

2(8)=(50m5) 93 ha) exo (3 1°8") (62)
. we= J wm, (6b)
where GQV _ Amh—c«vu .
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In this paper we shall find the asymptotic form of d.s. corresponding to the

statistical sum (6) and we shall show the consistency of both presented theories in
the low energy tail.

II. MINIMUM COUNTING METHOD
Let us consider the Hamiltonian

~“~u
H=->-A-V@,

irwwm. m is the effective mass of the particle and V(r) is the random potential
statistically defined in the previous section. We restrict ourselves to such deep
states with energies E that it is sufficient to make into account merely the ground
mﬁmwom in each negative potential fluctuation, i.e. the probability of the potential well
é.:.or can give the excited state with the energy E must be negligible compared
with the fluctuation giving the ground state with the same energy.

. The crucial assumption used by HL was that all the eigenfunctions f(r) with the
given o:on.@ in the tail have the same shape or equivalently, that all the
corresponding potential wells have the same shape. The energies of the corres-

voz&:m. m.noEa states in the framework of the variational principle are given by the
local minima of the averaged energy

E,(r0) =0~ V.(ro), )

where 6 is the mean kinetic energy

@N“.\,A..I-.%Almm Dv f(r—rxo) dr (7a)
and V (r) is the smoothed potential :
Vi) = [ V@) fe—r) de (7b)

(the wave function f(r) can be chosen to be real).

In the low energy tail the eigenstates are placed spatially far between, so that the
possibility of the simultaneous overlap between two different states is quite
negligible. Then the number of the eigenstates with the energies from the interval

Qm_ » E + AE) is approximately equal to the number of local minima of V.(r,) with
values

E-O©<V,(t))<E -6 + AE.

HL moc.sa that except for the terms which are negligible in the low energy tail, z_m
approximate d.s. is given by the expression
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0,0,0,(® —EY

B (@ -Ey
@Amv| ANMHVNJ&QM Inlll‘lv‘ Amv

exp A 2n0}

where
a;=W.(0) (8a)
and o2, o2, o3 are the eigenvalues of the tensor
H =~V I,W.(3)];-o. (8b)
The function .S\HQV is the smoothed autocorreletion function given by
W)= [ [ FOPEWE—v +y) drar.

Since the variational method overestimates the energy of the ground states, the:
formula (8) underestimates the actual d.s. HL used an approximate method to find
the best shape of the wave function f(r) for a given energy, which maximalizes the
expression (8).

Instead of using this procedure the statistical prognosis was used for the potential
wells in {1]. This is a good approximation for the space regions smaller than the
correlation length. As the states in the deep tail are strongly localized, the function
f(r) can be found by solving the Schrodinger equation

[ 4+ VOWE | @ =Ef®). )

2m

III. GAUSSIAN AUTOCORRELATION FUNCTION

The formulae of the previous section will be now applied to the case when the.
autocorrelation function has the form (3). If the size of the function f(r) is
supposed to be smaller than the correlation length, the approximation (4) takes
place and by solving Eq. (9) one obtains the eigenfunction of the ground state

_ (mo\** mo , ‘
f()= A.Ii.v exp Allﬁ_ r v | (10)
where w is given by the expression
2V(0
w*= ||.I5MNV (11)

and the energy of the ground state is

mn<§+.w.we. QB

Excluding V(0) from Egs. (11) and (12) we get
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Lot -3h0sEeo
NSS Nve +E=0. Guv
This equation Qwﬁnﬂm:om the dependence of the frequency @ on the ene
.H.zrn characteristic size A of the function (10) can be defined as the dist 4
i—:o.r Hro.mxvosgzm_ factor will decrease on the value e~* Followi mwnn or
considerations regarding the size of the eigenfunction, the oo.:&;oc e Turther

A?=6h/mw <L?
must hold. Using (13) the corresponding condition for the energies is

E|> 15h/mL?
[E| mL?,  E<0. (14)

If this Q.S&ao: is satisfied, the size of the ground state function is smaller than th

oo:,o_m:ow _o.nmg L. From the intuitive point of view the inequality (14) ““w .
that H.:o kinetic energy of the particle in the potential well of the characteristic s
L cnim of the order h?/2mL?, it must be much smaller than the depth of mﬂ__”o
potential well. To write the expression for d.s. one has to compute the quantities )

3 .
@HMW—S, Qw"AN.‘.

2h

—-372 N
e 2 4
Sehuv » O1=03=03=15 00" (15)

hN

We have used the formulae (8a, b), (10).

_ or the € 394 (2 ~ W t t | :Umﬂu ution mn A v

_ E? 1/E n 372 .Ilul
@Qujvllﬂ._/\”_ul& exp All AIV _3|E /\ SR (16)

The t |
o o:n:w.m _AW ::.” orders |E|, |E|'?, |E|® are neglected in the argument of the
Mv en ~5 E.E:c:. In the preexponential factor only the leading term is kept.

ur calculations neglect the presence of the excited states in each minimum. The

ground mnw:m with the energy E is generated by the potential well with the depth
< — pu—— = z .
o=E b hw, the first excited state with the same energy is generated by the well
with the depth V, = E — 2 .
epth V.=E 2 hw. As follows from the Gaussian statistics the ratio of

the probabilities of both potential wells is of the order

exp (=53 (V- V3).
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The requirement of neglecting the excited states then leads to the condition

SH\N :u

This condition is just opposite to that of Bezak (5).

The use of the minimum counting method assumes a one-to-one correspondence
between energy states and minima, which is only valid if the spread of the wave
function associated with each minimum is small compared to the mean separation

between minima, i.e. if

ﬁAQM o(E) amv-_. (18)

When only minima below some cut-off energy E, are to be counted and
A2=6hL(2m|E|)™" is the characteristic size of the wave function, a ‘‘safe”

condition can be written with E, =0, which gives
3
18 V4w

e (19)

|E|>

This is not any new condition and is less stringent than the condition (14).

IV. CONSISTENCY WITH BEZAK’S THEORY

Bezak’s results for d.s. are confined to be quasiclassical approximation. We show
how to get the asymptotical form of d.s. for the wide range of negative energies
from the statistical sum (6). We do not follow the direct way, which uses the

formula

2 _je4d

o) =5 [ 2(6) exp (BE) 0B,

because the function to be integrated strongly oscillates for imaginary . Therefore
we use another method (see Appendix) which gives for |E[>n, E<O the

approximate form

ﬁ SJN 372 Q—Jn_m_u mm
QA,V V2rn? \2nh?|E| ¥ 2L*ymn’ P 2n? (20)
rs

(The function QC& is defined by (6¢)).
For the energies

EN\N -\u
—n (BF) <E<-n @1)
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we get in agreement with Bezik [3] the asymptotical behaviour of the quasiclassi-
cal approximation

su\Ns 1/2

4r%h’

3/2

n

E

@hAmv”

(-2 @

On the other hand, for the states in the deep energy tail (17) the asymptotic form "

according to Eq. (20) is

One (E) == _m_u 1 E*

E 32 /\ w_u ST
2x? L’y ©xp AIN:NIu_M NSHMSV. (23)
This function is in agreement with the result (16) derived by the modified minimum
counting method. Both the approximations (22) and (23) are only special cases of
formula (20), which is valid for the wide range of negative energies. v

[t is interesting to compare the quasiclassical approximation and the approxima-
tion (16) for the deep states (17). We obtain -

3/2 UN

@nAmv |, SH\NJA u\n m
on = (awer) oo (3f;

This inequality shows that the quantum effects shift the energy levels to higher
energies.

We note that the quasiclassical approximation (22) does not depend on the size
of the autocorrelation function ; on the other hand the approximations (16) or (20)
depend both on the correlation length L and on Plancks constant h. It would be
interesting to probe how d.s. depends on the form of the autocorrelation function. -

In the previous consideration we have not discussed the physical foundation of
the presented model. To apply the last results to real cases the following questions
should be reconsidered : i) is the single band approximation well founded? (At
least the investigated energies must not exceed the half of the forbidden band); i)
is the Gaussian distribution law valid for deep potential fluctuations ? [4]; iii) how
to choose the autocorrelation function, is the approximation (4) reasonable
enough? : ST

I.'NHN?QVVH

APPENDIX
The assymptotic form of d.s.

For the Gaussian random potential the dominant term in'd.s. for :nmﬁ?m.
energies is :
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therefore we can write

Nv. (A1)

v 1|E
0(E)=g(E) exp Alm 7
The statistical sum corresponding to d.s. (A1) is given by

Z(B)= [ _ o) exp (~pE) dE
=ewp (3067) [ a®)ewp (-5 (F+n6) ) B (a2)

From (A2) it is clear that for nf > 1 the most considerable contribution in integral
(A2) is given by the large negative energies. The function

1/E v»v
xp ( —= (=+
oo (- (o
has a maximum for E = E,,..= — n°# and the width of this maximum is of the order
1. For nff>1 the relative width of this maximum is small, so we can write

approximately
z@y=ew (3160 a(-18) [ exo (=5 (F+np))aE=  (a3)

n<~§$7:§ exp (n°f?) for nf>1.

For B = — En~? we get the result

@AmvncukémNAxwv 96 Anmé _m_vvson. 33

This is the asymptotic form of d.s. for deep tails.

REFERENCES

[1] Ozvold, M.: Acta phys. slov. 26 (1976), 226.

[2] Halperin, B. L, Lax, M.: Phys. Rev. 148 (1966), 722.

[3] Bezdk, V.: Proc. Roy. Soc. London A 315 (1970), 339.

[4] Efros, A. L.: Uspechi fiz. Nauk 111 (1973), 451.

[5] Bezik, V.: J. Phys. A: Gen. Phys. 4 (1971), 324.

[6] Barta, $.: Unpublished results.

[7} Papadopoulos, C. T.: J. Phys. A: Gen. Phys. 7 (1974), 183.
[8] Drchal, V., Masek, J.: Czech. J. Phys. B 26 (1976), 967.

Received June 14", 1977.

107



