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SCATTERING OF COSMIC RAY PARTICLES
OF AN ENERGY ABOVE 1 GeV IN THE
INHOMOGENEOUS INTERPLANETARY MEDIUM

HELENA —C.HIAO<>*. MILAN STEHLIK*, JURAJ DUBINSKY*, Kosice

The scattering of the charged cosmic ray particles in the stochastic magnetic field, in
the presence of fluctuations of the solar wind velocity is investigated. A common form of
the correlation tensor of the stochastic magnetic field B, the solar wind velocity U,
and the crossing tensor P, is proposed. There are considered particles of an energy
above 1 GeV, whose Larmour radius is larger than the characteristic size of the
inhomogenities of the medium. In this approximation the equation is derived for the
concentration and the current density of the particles. The radial diffusion coefficient for
optimal values of the interplanetary parameters is computed. .

PACCESHME YACTHI KOCMHYECKOIO M3JIYYEHUA C SHEPTHEN
CBBINE 1 I'ss B HEOJHOPOTHO¥ MEXKIUIAHETHON CPEIE

B pafore uccnegyercst paccesHue 3apsSOKEHHBIX YaCTHI{ KOCMHYECKONO HM3Ny4eHus
B CTOXACTHYECKOM MArBHTHOM I10JI¢ B IPUCYTCTBUM (PIyKTyalmii CKOPOCTH CONHEYHOTO
serpa. Ilpegnonaraercs, 4To o6masi ¢opMa TEH30pa KOPPENSUHH CTOXaCTHYECKOro
MArs4THOrO nonsi B,s, TeH30pa CKOpPocTH conHeysoro serpa Uy, CMeLIaHHOro
Tenszopa P,g onna ¥ Ta xe. PaccMaTpuBarOTCA YacTHilbl € IHepruei capme 1 I'aB, pas
KOTOpLIX paauyc JlapmMopa Gonblie, 4eM XapaKTEPHCTHYECKUIl pa3Mep HEONHOPONHOC-
Teit cpenpl. B a3ToM npubanKeHny BLIBEACHO yPaBHEHME ISl KOHUCHTPALMM H MOTOKA
YACTHI[ M paccYMTaH PafHANbHBIH KOIPDUIMERT AnddDy3uu A ONTHMANBHBIX 3HAUE-
HUIl MapaMeTpoOB MEXIUIAHETHON Cpefbl.

L. INTRODUCTION

In the inhomogeneous interplanetary medium the scattering of the charged
cosmic ray particles takes place. This can be investigated by the method of the

kinetic equation [1]. The general solution of this equation in most real cases is
difficult. Therefore it is necessary to use various approximations in accordance with
the energy .vwnnn._om“ the resulting equations can be simplified in the case of R <L,
respectively R > L., where R is the Larmour radius and L. is the autocorrelation
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length of the stochastic magnetic field. If the inequality R < L. holds, we must use
the “drifting” approximation and it is necessary to consider a helical motion of
particles in the magnetic field. The authors found the diffusion equations for this
case in [2]. The opposite case R > L. was established in Dolginov’s and Toptygin’s
work [1], which supposed that 1. the solar wind velocity was regular, 2. the
distribution of the magnetic field irregularities had a Gaussian character.

The first assumption leads to the disappearance of both the correlation tensor of
the stochastic components of the solar wind velocity and the crossing correlation
tensor of the solar wind velocity and the magnetic field. These two tensors may
strongly influence the form of the resulting equations. The second assumption is
not valid, because at present it is already well-known that the spectrum of the
magnetic field inhomogenities has a power form. To such a spectrum there
corresponds in the case of the statistic isotropic magnetic field the correlation
tensor of the magnetic field in the form

Bu(e, =3 (HI0) {W(F) - w,(£) 22}, W

X
x x \-Dr2 x
GANLInv = Amv Ko Amv.

x\_ ., /x\ 2LZ ("
() =w(E) -2 [ e wory,

where

K, (y) is the McDonald function. We suppose the function ¥(x/L.) to be known
from measurements. H,(r, ¢) is the stochastic component of the magnetic field:

H(r, £) = Ho(r) + H,(r, 1), ()

where Hj is the regular component of the field, i.e. (H) =H, holds: The square
brackets are used to indicate the averaging over an ensamble of realizations of the
random magnetic field. We will consider the fluctuations of the solar wind velocity
analogically :

u(r, 1) =uy(r) + u(r, ), . 3)
(u(r, 1)) =ue(r),  (w(r, 1)) =0.

The presence of the velocity u causes the adiabatic change of the particles’ energy.
The  expressions (2) and (3) allow to establish the cross-correlation tensor
(H .u,s). Let us note that in order to receive further information about the spectra
of the fluctuations it is necessary to investigate simultaneously the correlations of
many plasma parameters [3], for example the spectra of the interplanetary
magnetic field, the velocity and the plasma density, and their corresponding
cross-correlation tensors, etc.
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I1I. KINETIC EQUATION IN THE CASE OF THE
PRESENCE OF THE SOLAR WIND VELOCITY
FLUCTUATIONS

We compile the kinetic equation for the mean distribution function F(r, p, ¢) in
the phase space if R > L, holds. This condition is true for the energy of the particles
T>1 GeV, because the value L.=2 X 10" cm. We use the general form of the
kinetic equation [4]. If the distance is of the order of the scale of the magnitude of
the magnetic field correlation radius, we can put the change of the particle
momentum A p(t)=0 and the n:m:mo of the particle radius vestor Ar(t)=vr. (For

instance, the operator exp : <||| [v—u, Hy) v qw from a general kinetic

equation [4] has no influence on ﬂrn BoBoE:Ev. Hro mSnrmmao component of the
electromagnetic force acting on the particle is

=2 [v—uo, Hy] < [wH), : 4)

and then the kinetic equation has the form

(B+v+Eiwal m_.v F(r.p,0)= )

m? \‘ (Hraltrp) AT =— mbm m.A.., P £),

where w=v —u,, v=c2E'(p)p, E is the energy. The correlation tensor (it ,.ft14) is

N
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We have denoted by B, (r, wt)= (H,.H 1) — the autocorrelation tensor of the
stochastic magnetic field, by Ps.(r, wt)=(Hsu,,) — the crossing correlation
tensor of the stochastic components of the magnetic field and the solar wind
velocity, by U,.(r, wr) = (u,,u,.) — the autocorrelation tensor of the stochastic
solar wind velocity, by €., the tensor Levi-Civita. The form of B, is given by (1).
It can be shown that

v
. e 1 G) .
h B 4(r, wt) mﬂnmﬂ

= (H?) (8ot bos), @

where b, is the symmetric tensor with zero diagonal components. Its nondiagonal
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components are proportional to w.ws/w?. The exact analytic form of the tensor P,
and U, is unknown at present. However, the magnetic lines of force are carried by
the moving fluid into which they are “frozen”. Hydromagnetic turbulence may be
generated owing to a high magnetic Reynolds number, although we will not discuss
this subject here. Solar wind steadily flows out into interplanetary space from the
coronal region. It seems that this wind interacts strongly with the magnetic field
ambient in space to a distance of many astronomical units from the solar corona,
and perhaps even beyond the solar system.

We assume the analytic forms of the tensors B, P.; and U, to be similar, but
their numerical coefficients are not quite accurate. The experimental values
confirm this assumption. For example, the power spectrum of the radial solar wind
velocity u, in the 2 X 107 to 2 X 10™° Hz frequency range is demonstrated in [5].
Jokipi [3] reported that extensive direct measurements of the properties of
solar-wind plasma showed the solar wind to be highly turbulent, with a broad
spectrum of fluctuations extending from wave numbers k ~107"" to k=10"*cm™".
The data consist mostly of a simple power-law dependence k™ with the index
a ~ 1.5 +2. Cross-correlation between the radial velocity «, and the density n, and
the strong coherence between B” and n have been found by Goldstein and
Siscoe [6]. Pioneer 6 and Pioneer 10 observations [7—8] show that the frequency
dependence in the~107* to 10~* Hz frequency range of the power spectra of the
solar-wind-proton speed is similar to that of the power spectra of the sol-
ar-wind-proton number density. Further, the power spectra of the solar-wind-pro-
ton streaming speed and the power spectra of the interplanetary magnetic field are
similar, too.

For illustration we can show a simplified example on the boundary of the
magnetohydrodynamics theory: if the irregularities of the solar wind velocity u and
the magnetic field H have a wave origin, the characteristics of u, H satisfy similar
equations. Consequently, in the solar-wind-plasma

dH -
T rot [uH].

In the case of u and H, = H— H, being small perturbations, we have

"3H, -
= (HV
3t Q.mc v.-u
v_ _ » “
na= 4? +£« Eo:_vvfru (H,V) H,,

where p is the hydrodynamic pressure and n is the plasma density. .
Putting H,= H,,, we obtain equations, whose solution is in the form of transverse,
plane waves expanding in the direction of H,. Let us take H, = H,,. We assume the
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dependence of the pressure only in the direction of the x axis, i.e. in the
propagation direction of the waves. The resulting equations have the form

oH;

ot

wﬂw u H, oH,

==y, — etc,
dt 2x n

= 2H o H, 2

which give equations like the following one

. :
MHMwI\« As “an mv, etc.,
(moreover ordinary wave equations for the Alfven waves). The equations for
(H?), (u?), (uH,) are the same as regards the accuracy of the numerical
coefficients. In accordance with this circumstance we can expect a high correlation
between the magnetic field H and the solar wind velocity u in waves (and
perturbations, respectively) moving away from the sun [4]. (In a community, the
fluctuations are not only pure transverse Alfven waves). The author gives
magnitudes of the correlation coefficient ¢ of the solar wind velocity and the field
strength, which were measured on the Explorer 43. These magnitudes are cca 0.7,
frequently even 1.0.

The diagonal components of the tensors P, and U 4 (as in the case of the tensor
B.) give

[ st we) un dr =10 22 ), ®)
0

[ U, we) s dz = 22 ),
1]

where Ly, L, are the correspondent radii of the correlation, y,, y, are the

To the Sun

Fig. 1. A deformation of the magnetic line of force is caused by the disturbance of the solar wind
velocity.
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numerical constants (with the value ~1). The non-diagonal components are not
written, because these give a zero deposit in the following calculation, like b .

This reality will be understood if we assume that the regular magnetic field form
of Archimedean spirals (the dashed curves in Fig. 1.), i.e. m=u, holds. If there
appears the fluctuation u,(r, r) (for example owing to the disturbance on the Sun),
the magnetic line of force begins to drift in the direction u, . Let the vector u, have
a direction from the Sun, i.e. a radial direction. Evidently, most changes arise in the
radial component of the field and we suppose — with a certain inaccuracy — that
the other components are negligible. We have an analogical case as regards the

direction vertical to the radius vector. Consequently, the tensor P, is approximate-
ly proportional to ..

II1. DIFFUSION EQUATION FOR THE
CURRENT DENSITY OF PARTICLES

An application of the method of the calculation of diffusion equations [1—2] to
our case gives the vector equation for the first and second momenta of the
distribution function, i.e. the equations for the concentration ‘ZA... p,t) and the
current density of the particles ¥(r, p, ). On the right-hand side of equation (5)
there arise expressions consistent with the component of the tensors P,s, U.s, Bos
which are of a higher order in the decomposition according to the parameter (u/ evw
We put (u/v)*— 0 in these expressions. The non-diagonal component, for example
w&: gives a zero deposit in the resulting diffusion equation owing to the integration
in an angular space with a polar axis along the momentum vector.

If the energy change of the current is small in comparison with the diffusion
change, we obtain the equation

A, _
R W]+ qd —q(d) + ﬁ_.? mv = ©

- _, ON_p3N A A )
Xo @-. w mﬁ AE.T”IQ :——L...Q—-Vlzzo Mﬂu

where we denoted

12 o, Ly, Hi (u?) 18 ..\ L,y, Ho (u,H,)
q=-= e _T?ll 2\ Ly¥p Ho (u, Hy)
s b Ly. v* (HY) 5P vhns v (H?)

24 . L. Hy {u3) 3 . Ley, uoH, (u,H
g=1-=2p Ho IA@II 2y LpYe o (u,H,)
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Qn“mﬁwngﬁc:o At_m_v
5 Ly v* (H})’

u, (10)
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_ 3c? qu
< e’r.L. (HY) ,
contains the parameters which characterize both the stochastic magnetic field and
the fluctuations of the solar wind velocity. This equation is more exact than the
equation found in [1] for the high energy particles and shows the current
dependence on the gradient of concentration and the power spectra of cosmic ray
particles. The last term in (9) may usually be neglected if we investigate the
diffusion process in a time scaling t=A./v, i.e. when the use of the diffusion
approximation is applicable.

is the mean free path of the particles. The vector equation 9)

IV. RADIAL DIFFUSION COEFFICIENT

In a general case, the correct form of the diffusion tensor can be obtained from
equation (9) if the vector of the current density }(r, p, t) is expressed by the
particles concentration and the parameters of the medium. However, obtained in
this way the expression is very complicated. In order to compare with an
experiment it is useful to calculate the “‘radial diffusion coefficient” only, which we
can find from the expression for ¥ written in the spherical coordinate system with
the Sun in the centre. We will propose the following optimal values of the medium
parameters near the orbit of the Earth, when the angle between H, and the radial
direction from the Sun ¥=m/4: Hy,=4.5y, (H?) =4.2y%, u,=4x10"cms™’,
(u?)=5%x10" cm’?%, L,=L,=L.=2x10" cm, v=2.

The numerical calculation gives

v = MO.NA (A.U.)*/h for protons T=1 GeV, a1
™~ 11.02 (A.U.)*/h for protons T =10 GeV.

The found values of the radial diffusion coefficient %.(T) in the range of energy
T=1 GeV are represented in Fig. 2 (the full curve 1a).

In this figure there are illustrated some experimental values for T=1 GeV, [10].
(The case v =2 corresponds to the values dentod by a). For the higher solar activity
period, when the index spectrum v of the inhomogenities is smaller, we obtain the
theoretical curve 1b for the corresponding experimental values of b. We see the
theoretically predicted dependence of x,,(T) link up with the dependence of x,,(T)
from the low energy region. In Fig. 2. also theoretical predictions obtained by other
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methods are illustrated. The dependences 2a, 2a’, 2b [10] were found from the
Fokker-Planck equation. Analogically the value [11] was obtained — curve 3. The

values of x,, calculated by many authors are usually smaller than those obtained

from the diffusion approximation of the kinetic equation.

L !

10° o' T[Gev]

Fig. 2. A comparison of theoretically predicted dependences of x,,(T) with experimental values [10].

REMARK

The asymptotical dependence of ., on the particle energy T, the characteristic

size inhomogenities L. and the index spectra v in the energy region TS 1 GeV are
as follows:

%(T, v, L.)~T**vL", (12)

so that the radial diffusion coefficient x, decreases if the index spectra of the -

magnetic field irregularities decrease. However, in this case there increases in the
interplanetary space the number of inhomogeneities of large sizes, i.e. the value of -

L. increases. We see that there is a close connection between the last two
dependences.
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