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PATH INTEGRALS AND THE KLEIN-GORDON
EQUATION (1)

VILIAM PAZMA®, Bratislava o

Path integrals formalism presented previously is generalized for the cases in which we
have to consider the amplitudes of the histories which change their orientation in time.

UHTEIPAJIBI 110 TPAEKTOPHAM M YPABHEHHUE KIEWHA —TOPIOHA

PopManu3M UHTErPaNos MO TPACKTOPHAM, Pa3paGOTaHHEIA B npeabIAyunX paboTax,
0006UIacTCA HA CAYYau aMITHTYN, H3MEHSIOUMX BO BPEMEHH CBOE HAIDABICHHE.

L. INTRODUCTION

In our previous paper [4] we formulated the new path integrals representation of
the Klein—Gordon (KG) equation. The above mentioned formalism does not offer
the expression for the propagator function but it allows us to put into relation (by
means of the path integrals) the solution of the KG equation and the boundary
conditions (the wave function is given at two different temporal instants ¢, and ¢,)
and the solution we look for te(¢,, ,)). The corresponding continual integrals can
be transparently interpreted and they are in a close relation with those used by
Feynman [1—2] in his formulation of nonrelativistic quantum mechanics.

The fields we considered in [4] were static magnetic fields and the continual
integration had to be performed over histories which did not change their
orientation in time. However, if we consider a spinless particle interacting with the
field which is not a static magnetic one, we are forced to generalize our formalism.
The generalization leads to the necessity to take into account the amplitudes of
such histories which change their orientation in time (from a certain point the
history can proceed in a time decreasing or increasing direction) and this
generalization is the aim of this paper. In what follows we shall confine ourselves to
the homogeneous electric fields and the paper is organized as follows. In Sect. II we
present a simple example as the motivation for our speculations. In Sect. III we
shall give the expression for the amplitude of the history. The solution of the KG
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on:m.mo: in terms of the path integrals will be given in Sect. IV. The potentials we
o.os.m_n_an have the discontinuity point £, =t,+ ne, n =0,1,2,... and the formal
limit £¢—0 will be performed in Sect. V. Sect. VI contains some concluding
remarks.

IL SPINLESS PARTICLE IN HOMOGENEOUS
ELECTRIC FIELD

. The dynamics of the spinless particle interacting with a homogeneous electric
field can be given by the equation (we put c=1)

(in WVN Y(x, 1) = [M3+(— ihgrad — e A (1)) p(x, 7). )

. In what follows we shall look for y(x, ¢), te(0, 7) when (x, 0) and Y (x, 7) are
given. For this purpose let us consider the potential
>Qv.”>o+A>_.I>ov 0(t—u1), 2

where A, are constant vectors, 0<¢, <7, and 8(¢) is the step function. In this case
Y can be written as

V=9 +y©,

where « 7 -
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for te(0, #,) and likewise for re(t,, T).

If
YO 0) =y (%) yA(x, 1)=0, 3)
then the solution of Eq. (1) (with the potential (2)) is
U 0= [ [ B e |§ p-x) ~HE) | v+ @)
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where
H,(p)=VMi+(p—eA.)
v )= [ dro [ s exp [ (G —x0) — 6Hu(P) | 5%
and
1+R(-p)=D(p) (5)
1=R(~p)=D(p) H.(p)/Ho(p). (6)

Egs. (5—6) secure the continuity of ¥ and (3/3¢) ¢ at the point t=¢,.
Using the results obtained in {4] one can write

S 0= ax|[ o §F_._.F__._%é|h dE 4(8)) x

o=<t=1,;

xexp {1 [ d€ oa— (e, m, £)1}] Wi + )
+ [ axfdx, [ @ Vi [9q [ 9p o(x,—x- [ ag 4) x
xexp 1 [ dtlpa~ 30w, m, £} R(p) [ @ Vim, [0, [ op.x

% 8(xi=x= [ A o) exp {1 [ d& [poda = " (po. mo, O} | 750,
0 0
wminm space we do not write down the equally complicated expression for (4'). In
the equality (7)
1 M;

‘Hv .I@Hm>% IA | ..H
mma A_Pi,mvllws +N §+§Vw q=dq/d¢

and the definition of the continual integrals is the following
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ie

xexp {1 [Pe(ai — ax-1) — 2 (b, m, 1)),



where £ = (¢ - £,)/N, and the variables marked by the index K are taken at the time
Ix =t + Ke and q(ty) =x, q(ty) =x,.

. M<o=58€.38 the expression in the square bracket of the first term on the
right- m.sa side o.m Eq. (7) as the sum of amplitudes of all possible histories
oO::wQEm the points (x,, 0), (x, ) and running in a time increasing direction. The
amplitude of the history (m, P, q) has the form

exp fi [ 45 a0, m, )}

(+) 5 : .
and ww. has 5@. following meaning. In Petris’s [3] formulation of classical
mechanics the action integral is given as (see (4] too)

4 4 -2
%H\ n_mhn\ dg _,‘sxwa +m...>|m€|w. AS +Ei
L to m

(we consider the interaction of a particle with the electromagnetic field) and
HV=pq—L(q.9.m, &), p=05L/3q.

The m.nnoi term of the right-hand side of Eq. (7) is interpreted as follows. The
expression in square brackets is the sum of the amplitudes of all histories which
connect E.n uo._-:m :.~ question but these histories change at the spacetime points
(x,, t,) their orientation in time, i.e., from (x,, t,) they proceed backwards in time.

The mgnam:Nwaoa of these results for the case when A(r) (a physically
reasonable function) is approximated by A, (¢r) given as

>%&H>?mv for te(ne,(n+1)¢)
n=0, +1, £2, .

will be performed in the following sections.

NI. AMPLITUDE OF THE HISTORY

Let us consider the continual curve (history) in an eight dimensional space
(¢, m,p,q) and let the curve start at the point (t,, m,, Po. Q) and end at
(¢, m,, p,, q)). It means that if t=t(A), m HSQS.. vHvA»v,.aunﬁpv Ae(0,1)
are parametric equations of the curve, then to=1(0), mo=m(0), ‘ t HN.GV
my=m(1), ... If for example r(1) is a decreasing function for A€ (4,, 4,), then im
shall say that the history we consider runs backwards in time ggo.n: :,5 points
(t(Ay), m(d)), ) (1(Rs), m(A,), ...)- If ¢ decreases (or increases) along certain
parts of the history, then for this part the inverse function A =A(t) exists and we
shall formally represent the whole history by the “functions” (m(e), p(1), q(¢)
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On the basis of the previous results we assign to the history s=(m, p, q)
connecting the points (X, &), (X, t) the amplitude

AGIA (5 0, (0, )= a(s1A) exp (5 56)). ®)

We shall calculate the functional S{s) in the following way. Let us divide the history
s into the parts s,, i=1, 2, ..., k, where s, represents the history running only
forwards or only backwards in time. We assign to s; the action

s6)=| T dt [pa - HOp, m, 1)), )

where the sign + (—) is taken as that time when s, runs forwards (backwards) in
time. Then

S(s)= W S(s:).

i=1
\

The number a(s|A.) is given as follows.
i) We assign to the point ¢, = ¢, + ne at which the history s changes its orientation

in time the number

+:AH1~ n:v|mAH—wq P_l_v

R () =
R™“(p, t.) TH(£p, t.)+H(xp, t._,)

where

H(p, t,)= VM3 + (p— eA(1.)).

il) ‘'We assign to the point f, =¢,+ ke at which the history s does not change its
orientation in time the number

D®(p, ,)=1+R®(—p, t,). (11)

R, DY (R, D) are taken at that time when the history proceeds from &,
backwards (forwards) in time. Now a(s|A.) is equal to the product of all such
numbers which must be taken into account for s. If s does not change its
orientation in time and does not contain any point of discontinuity of A., then
a(s|A.)=1. If s changes its orientation in time at the point which is not
a discontinuity point of A,, then a(s|A,)=0.

IV. THE SOLUTION OF THE KG EQUATION
IN TERMS OF PATH INTEGRALS

According to the previous results the solution of Eq. (1) (with the potential A,
(for t€(0, t) can be formally written in the following form



v(x, CMTF. M A(s|A(x, 1), (%0, 0)) Y (xq, 0) + (12)

+Tr S AGIA® 1, (x0, 1) ¥, 7).

The mc.BEwno: in .mnu. (12) must be performed over all the histories which connect
the points in question and all the points of which belong to the time interval {0, 1)

(it means that if we have the parametric expression of histories, then t(A)e(0, 7)
for all values of 1).

V.FORMAL LIMIT ¢£—0

In this mn.naoa the formal limit £ — 0 will be performed. This step seams to be the
weakest point of this paper but the final results indicate that the limit £ — 0 as given
below, is not meaningless.

For a sufficiently small ¢ we can write (A is assumed to be differentiable)

R Nv.(+m|®|_ H(+ . .
B 6= g, LR b) = 13
_eEL)(pFeA(s)) e
2H*(+p,t)

where E= —dA/dr.

Hence the sum of amplitudes of all histories which connect the points (x,, 0),
(x,¢) and run forwards in time is equal to

K$'(x, 5 x,, SHTN ,\nl% ,@i Pp @?srﬁﬁ am.._@vx (14)

X exp ? b mm .Txnlwm?(&? m,E)+

o EE)(PE) - eAE))
Hieh (@), B) :

where we used (» is running over a corresponding set of indices)

Dxp, 1)~ TT (1 — CEG)P(L) —eAs)) £y
1D, 1) E? 2H(p(2,), 1) Vz

~exp - [ " mm%m.wv )

- The o.onascm_ integral (14) can be easily calculated. Performing, at first, the
Integration over m by means of formula 6]
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[ fren {5 el -eo 5]
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and then the additional integrations, we obtain

Ot x. 0y [P [H®,0)
Mﬂo VA%u s' X0, Ov|“AN§.HVu IA—Y nv X AMMV

xexp 1 [ptx—x)- [ dsH(p, 8]}

Likewise the sum of amplitudes of all histories running backwards in time and
connecting the points (x,, T>¢), (x, t) is equal to

o o x oy [P [H(p.T)
K§(x, £ r.:;fwasu E_.,e.

X (16)

xexp [ | px—x) - [ dzHe, &)])

The sum of amplitudes of histories which connect the points (%0, 0), (x, ¢) and
change at the points (x,, t,(¢, 7)) their orientation in time (from (x,, z,) they
proceed backwards in time) is equal to

. . av_.wm@,:v.zm@,:v
Jox [ an ks Hep. o TV 2HE 0> &

x.oxnﬁw. T.an_v - h.. dE H(p, mV:.wﬂ.iAx: L X, 0)

(H as usual means (d/dr) H).

These results allow us to write the corresponding expression for any sum of
amplitudes and indicate that Eq. (1) will be equivalent to the pair of the following
integral equations.

Let us write

P(x, )= )+, 1), (18)

where

190 0= [dx S AGIAIR 0, (x0, 0) ¥(x0, 0) + (19)

+[ax 27 AGIAIE 0, (0, ) v, )



(+) - i - P o .
m,sa M (Z*”’) means the summation over all histories which come to (x, ¢) in the
time increasing (decreasing) direction. According to the results of this section

. (+) — () ' .. Q—.. H(p, §)
K0 0=1 0+ [ a [ay [ s JEEED (20)

X Nwmwmmvv Qlw _T? —¥- h dn H(p, i: X7, &)

O, )= 5 1) — [ e [ay [P [HE@ED :
K000 =250 0 [ ag [ay [ 8 JEED o

w%m_uw eiw T@ ~¥- \ “an H, 3:?@, £),

X

where

X67(x, £) = | dxo K§V(x, £ %o, 0) 9 (x,, 0)
X7, )= | dx, KSx, 15 x,, 7) 9©(xi, 7).

Egs. (20, 20') can be regarded as the new representation of Eq. (1).
To comment these results let us write V¥ in the form

_(_dp o
Y(x, DI\ rhy D(p, 1) exp Am ?hv, 21)
Then
e 1.,
ar +WI (p,t) @=0. \ (22)

. 3.0.5 the formal point of view Eq. (22) is identical with the onedimensional
time-independent Schrédinger equation. Using results obtained in [5] or [6] we
almost immediately obtain Egs. (20, 20").

VL. CONCLUSIONS

The generalization of our formalism for the case of the interaction of a spinless
particle with arbitrary electromagnetic fields is not trivial. Our speculations
indicate that the generalization leads to very complicated mathematical expressions
but the formalism preserves its basic features.

It seems that the formalism can be practically used in these cases only when the
effects connected with the histories which change their orientation in time can be
neglected. Namely in our formalism the amplitude of the history has the form

10

exp m S+ ?w_vH_,

where S = [ d [pq— %] and S, is connected with the possibility of the change of

orientation in time of the history. It is natural to expect that in the case of the

“almost” classical motion of a particle one can put S, = 0, or equivalently R =0,
We wish to thank Dr. Petras for stimulating discussions.
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