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PATH INTEGRALS FOR INERTIALESS CLASSICAL
, PARTICLES UNDERGOING RAPID STOCHASTIC
TREMBLING (IL GENERAL THEORY)

VIKTOR BEZAK?*, Bratislava
A thorough analysis is given in order to clucidate delicate differences between the

s : .
age of the Feynman path integrals in quantum mechanics (or quantum statistics) and in

be : . =S
yond the white-noise approximation is also suggested, with discussing difficulties

conne ith i i izati i
. o.:& with it. Finally, a generalization is mentioned concerning an inertialess
rownian system of ¢ degrees of freedom.
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Il. LANGEVIN EQUATION WITH A GENERAL DETERMINISTIC
FORCE AND SMOLUCHOWSKI EQUATION

Without specifying the meaning of the variable x, let us investigate the Langevin
eguation vi+ F(x) =£(0), M
where f(t) is a Gaussian white-noise function:

F@0)=0, {f@')f@))=n*d(~1"). , 2

For simplicity, let no boundaries be present. The nonlinearity of equation (1)
makes the formulation of the corresponding path integral somewhat ambiguous.
This ambiguity is delicate and we will discuss it at the end of the present paper (in
Appendix IV following other elucidations). The simplest form to which the path
integrals can be reduced is

X, H t .
Paroiho)= | ax@exp{ -3y [ elm@-Fa@r). @)
x0.0 (]
This seemingly plain formula requires extraordinary caution when we deal with the
exponent. Namely, when we decompose the exponent, one of this terms is

[ dw@ Fa@) =" dx@ Fuece). @)

Then, if we have chosen a potential V(x) such that
F(x)=—-dV/dx, (5)

it is tempting to put (4) equal to the expression V(x,)— V(x). Nevertheless this
would be fallacious and we must accept the inequality

since the subintegral in the Lh.s. of (6) is not an ordinary differential. This
circumstance reflects thé property — well-known to connoisseurs of the Wiener
theory of the Brownian motion — that the paths x(7) are so highly irregular that
they do not possess derivatives ¥(t) in a classical sense. Notwithstanding, the
concept of the path integral (3) may still be used but one must know how to
path-integrate correctly.

To elucidate the path integration, let us use the transition property of the
conditional probability density P(x, t|x,) and write first the obvious equation

S

P(x, t +Tlxe) = amw?q_mvim;_énﬁ dE P(x, tlx—E)x  (7)

—

XWAH|W, lkcv



_moﬂo”onm _,Moomuﬁmc_o as the Chapman-Kolmogorov equation”. The second step is to
monoams to zero (r>0) so that the path integral representing P(x, T|lx—&) in
ance with formula (3) may be reduced to the simple expression

2

Pe k8= () "o (- L v Ere-n]]. @

As i 6 R C e
he time variable 7 js infinitesimal, all relevant values of the integration variable

Ein :..o r.h.s. of equation (7) are infinitesimal as well. If we put expression (8) into
equation (7), we must leave the vital Gaussian factor

96 0=(51=) " o {-L51) ®

MM mﬂwaﬂohwomﬂamww ““HQ while developing n<oJAE:m remaining into the Taylor series
Sclipior:age In 7 and the mwooua order in €. Afterwards, the integration with
robg gives terms proportional to T that must be equalized with the term

x, t|x,)/3t from the Lh.s. of equation (7). The unique result of such

[ :N— tio [+ m [ H~°

aP(x, u_kovn N’ ¥P(x,tlxo) 1 3

ot N%n ax? .Iw\..wﬂ :UA\«V MVAH, lkov_. AHOV

Hrwmwu_ﬁ_wﬂﬂonw h“wocq_unwmo nouon_.m::m the massless particle in the “x-space”
o thas e FO er-Planck equation moq a true mass particle in the “velocity
et MoEo moaam\rwﬂ more widely known in statistical physics. For
e 1 are vqomwzcnm the .mowwn_.-w_msnx equation for the “velocity
v? 85 nwoaawx I1, taking F =0, in accordance with Ref. [2].
) QO&:HMW%M“MMW ﬁwo ?:Q:.ua F(x Im.v in expression (8) let us point out that
e aﬁ«?v\»?%vv ] nNE:mzm suggestion m.on approximation of expressions
in the A Lx( in the oxﬁoﬁ..wa of path integrals. Such expressions, linear
elocity x(t), are approximated according to Feynman’s theory (see his

original article [3]) by expressions like Q..tla..vx\»Aw (x; _+kvv or
X N i+ i

1
(xi, Hva~>~AN~+_V+>.Ak‘V_ (““trapezoidal rule”). If we followed Fenman’s

"It istori j
he mshu””___.ﬂ vnh_mgo:ﬂ:w more just to call the Chapman-Kolmogorov equation, as some authors did
e S r!m 0@:»:0:.. Nevertheless, we will use in agreement with other authors (cf. e.g. 2h 5%
chowski equation for a specified form of the Fokker-Planck equation (cf. equ. (10) and
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usage — which is undoubtedly correct in quantum-mechanical and quantum-
-statistical context with path integrals involving a vector potential A(r) —we should

be misled when using, with x,.,=x, x, =x — §, rather the function F Aa lw mv or

.NH. [F(x) + F(x — &)}, respectively, instead of using the function F(x — &), which is

really correct in formula (8). To make this peculiarity more clear, we are enclosing

Appendix II1.

This “discrepancy” can simply be explained as follows.

In quantum-mechanical usage, the ultimate requirement which must be borne in
mind is that the position x and momentum p, be noncommuting operators
satisfying the Heisenberg commutation rules®. These rules, when applied to the
operator (p—eA)’, give rise to a term ~ div A that would be absent in the
Hamiltonian if it were derived from the path integral defined with an exponent
containing a sum of expressions (X;.; —X:) A.(x;)=EA,(x—&), in analogy to
formula (8). A way how to recover from the quantum-mechanical path integral the
correct Hamiltonian in full is just given by using, for instance, the expressions

(Fior =) A3 i +2)) =EAx -7 E).

On the other hand, the ultimate requirement which must be respected in the
probabilistic usage of the path integrals is that the transition probability density (8)
be Markovian, i.e. that the value of the function P(x;.,, t|x;) for the infinitesimal
time =17 in the next state x,,., =x be solely determined by the previous state
x; =x — & at t,=0. Thus, for any fixed value &, the only function of x which may be
expected a priori to occur in expression (8) must be a function of the variable x — &
but not of the variable x, separately or in another combination with §&.

III. A GENERALIZATION DIRECTED BEYOND THE
WHITE-NOISE APPROXIMATION

We will briefly show difficulties met in any attempt to go, in case of presence of
a general deterministic force F(x), beyond the assumption that the autocorrelation
function {(f(¢t') f(t")) be of the white-noise type. For brevity, we assume
a one-dimensional formulation. In the stochastic (Langevin) equation

yi—F(x)=f(r) 1)

%) For a path-integral derivation of these rules, cf. § 9 in {3].
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the i f i i
. ::Q:m::m force f(¢) remains to be Gaussian of zero mean but the autocorrela-
tion function is some general function

(F@) fa)y =wa, o). (12)

1S

P(x, onvuh.“ Dx(t) exp ﬁlwﬁ .‘M dr’ dr"[yx(r")~ (13)

RG] W ) ) - Fe el

e - ’ " L ~
where W-'(¢', ¢ ) is the solution to the integral equation

g dr W(t', 1) W'(q, y=6@"—¢"). (14)

Let us show first that there exists a transformation Ax?xl?\?vv of the paths

leading to a simple Wienerian (“kinetic-energy”) term \. dz 2'*() in the expo-
(0]

nent of the path integral (13). For this objecti i
. I Jective we introduce a f i
defined by the integral equation o8 tneron B(m

A\M. A\A\v Q.ﬂo Q.&: gAHv~u .H‘v =\|~A.M_\u .@:v gA&:u N.:V ”Qﬁﬂ- —_ ﬂvtv. AHMV
If i i
moWw én.wn able to solve this €quation — and notice that even prior to having started
ving it we should have to have solved equation (14) — we could use the function

3 (r .
T(1, 1) = e ) dt’ U7/, 1,). (16)

Then, the transformation in question is

R_Su\o AT T(7, 7o) = (1, 7)) x(2) + (x" = x4) /1 + x5, 17)

y differentiating equation (17), using integration by parts and taking into account

definition (16), we obtain the transformation of the velocities : -
2= [ dnU(r, 1) (00~ Ule, 0 x4 (7 — xiy (18)

After inserting expression (18) int i
. o formula (13), remembering definiti
obtain the path integral in the form SReRon e

dxg0

P(x' tlxy) = \. @x\ﬁ.v mxnﬁlwmb dr xa?:b \.,. Qa\.aﬂ,a.:v“. (19)

.Zoév the path integral implied by the stochastic process described by equation (1 1)

The integrand (...) in the double integral of the exponent depends linearly on the
velocity £’(7). We have on purpose not written the expression (...) explicitly, as we
ought to find the inverse transform to (17) first. No simple partial differential
equation of the Fokker-Planck type is possible since the time variable ¢ occurs also
as a parameter in the function T,(7, 1) (and hence in the kernel of the inverse
transformation to (17), too). In addition, any derivation of such an equation is

impeded by the presence of the double integra .\‘ % dz’ dt" (...) in the exponent
of the path integral (19). e e

Fortunately, as long as the deterministic component F(x) of the force is either
x-independent or proportional to x, a fairly general stochastic theorizing, indepen-
dent of the concept of path integrals, is well manageable, as we have already
mentioned (Appendix I). No such possibility seems to exist for a general, nonlinear
function F(x), unless for small enough values of W(t, r) when an approximation
analogical to the WKB approximation of the quantum mechanics could still be
used. Generally, therefore, we may proclaim that the white-noise assumption is
indeed an essential secret of success and not following it means encountering
complications.

IV. CONCLUDING REMARKS

We can unify all the examples given in Part I of the present paper [1], as well as
further examples, into a more general scheme as follows. :

Let us realize a Brownian particle whose stochastic motion is described by the
equation
a [-i—F@)=1(r), (20)
where I is some constant tensor, F(r) some deterministic vector function that is not
explicitly dependent on ¢, and f(¢) some spatially uniform but temporally highly
fluctuating force defined as a Gaussian random function of zero mean ({f(¢)) = 0)
with a white-noise autocorrelation function

(B8 =AS( — 7). (21)

The product ff is meant as dyadic and A is a positively definite tensor.

The tensor T corresponds to friction but may contain (in case of the particle
being charged) also components of the magnetic field. To formulate the functional
path integral corresponding to equation (20), it is necessary to assume that I"A™'T
is a positively definite tensor, too. (I'" is given by transposition of I' and A" is

. inverse to A). Then the desired path integral is

18

P, tley= [ @e(e) exp TW % " defi(x) [T - 22)

.0

~ F(x(e))] A™{TH(1) - Fr(e)] .
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The probability aosme P(r, t|r,) satisfies the equation

wﬁAMNn_EV ”W <~.‘|~.>A~f.vﬂ.<~uﬁn..u N_..e.v _ Q.HI_.?.S ﬁA.n. n_-.ovf Ava

P(r, 40|r,) =6(r—r,), (23a)

which may be termed the Fokker-Planck (or Smoluchowski) equation related to
a stochastic (Langevin) equation (20). Equation (23) displays a tensor diffusion
coefficient .
. cuw AT, (24)

The problem can easily be generalized to the case of Brownian motion of
inertialess system of any number d of degrees of freedom. If 5 denotes a vector in
the 8:owvo=&=m.&-&Bazaoum_ Euclidian space, the consideration may run along
the same line : ’

1 — dynamic stochastic (Langevin) €quation for Z(r)

|

2 — path integral for P(Z, t|=,)

l v
3 — differential (Fokker-Planck) e€quation for P(Z, t|5,)
1 .

4 — solution P(Z, t|=,).
The solution must fulfi] the initial condition

P(Z, +0|2)=8(5 - 5,). (25)

In case of the absence of boundaries, or in case when the boundaries are ideally
reflecting (i.e. not absorbing), condition (25) implies the normalization condition

JAEP(E, t]Z,)=1 (26)

for all values of Z, and ¢=0.

It was evident from our analysis that in order to have, for a general case of the
deterministic force F(Z), the path integral in the Wiener (or Feynman-Kac) form,
it was truly vital to consider the fluctuating force f(¢) as a Gaussian random
function. Moreover, as we have stressed in Section I11, it is almost inevitable to
accept the white-noise approximation in order to guarantee at least partial

simplicity.

The step 23 is not compulsory and may be ignored whenever we can calculate

the path integral directly. Unfortunately, generally such a calculation is likely to
succeed only numerically.

Analytic calculations are possible when the €xponent of the path integral is
quadratic. Then the direct way how to calculate the =- and Zo-dependences of the
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function P(=, t|Z,) is to calculate the “classical path (s)” and insert it Q_.EEV into
the exponent of the path integral for P(Z, t|Z,). The result of such a calculation is
still uncertain in a multiplication factor & (¢) independent of = and Z,, but
dependent on . The factor #(r) may be calculated by the functional path
integration over closed paths or from the Fokker-Planck AmEoEn:oim_nc €quation.
Alternatively, the normalization condition (26), if applicable (e.g. for the case of
ideally reflecting boundaries), yields also a possibility to calculate the factor ¥ (¢)
directly without using either the path integration or the Fokker-Planck
(Smoluchowski) equation. Let us recall, however, that the analytically calculable
path integrals correspond to linear Langevin equations for which, as we have
suggested, there are other, and even better, methods.

We may conclude, therefore, that the path integrals have an opportunity to prove
their potency rather in connection with nonlinear Langevin equations. We believe
that the opportunity will soon become real as far as numerical methods for
calculating the path integrals (preferably of a Monte Carlo type) will become
a common-place in libraries of programs at contemporary computer centres.

APPENDIX I

Let us consider the linear Langevin equation without boundaries
YE+kx =f(t), (8 3]

where y, k are positive constants and f(t) is a random function — not necessarily

specified either as Gaussian or even as of EaLﬁﬂ:@-=mmma4%ﬁaﬂdd4ﬂt9®\i“\ o

function f(¢) be defined with zero mean,

(f(n))=o, (1.2)
and with some general autocorrelation function
FE) @)y =w(e', . (L.3)

Owing to the linearity, we can write generally the solution to equation (I.1) in the
form

x(t)= Tﬁov +w h dz f(z) exp A“\Ia q: exp AIW sv. (1.4)

Thus, we can directly derive the variance
A?Qvlio:wv HWR \. dr’ dz” S\Aﬂ\‘ ") exp AW (' + a.‘vv X (1.5)
0 0

e (~2£4),
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In particular, if we take into account the well-known relation
([x(0) —x(0)))=2Dr (L6)

defining the diffusion coefficient D, we shall obtain, for W(¢', t")=n26(t' — ") and
_ 1 . ‘

k =0, the value D S n*/y* without resort to a path integral at all. The conside-

ration can be generalized directly for higher statistical moments (x@)=xO)]")

(n>2) provided that the random function f(¢) is sufficiently well defined by higher

correlation functions or cumulants.

APPENDIX 11

The best-known form of the Langevin equation for a free Brownian particle of
mass m is

mv +yv = (1), (IL1)

.irnnn v is the velocity and the remaining symbols y, f(r) have the same meaning as
In Appendix I, Evidently, the line of argument given in Appendix [ may be
3@.@»8& by simply changing the notation. We will briefly reproduce, however, the
derivation of the Fokker-Planck €quation [2] — cf. also the collection of papers [3],
Pp- 33—35 — for the case of f(z) being a Gaussian random function of the
white-noise type. We start from the AO:mvSm:-Nomaomoaé equation

SN

2an’t
+1@=5)] P -, tlu,)

for the infinitesimal time ©>0. Denoting

0E D= (52) " exp {-7£] (1L3)

w?,l.lcovHA VE ,H d& nxvﬁllﬂ-ﬁs W+ (11.2)

2n?

27n’t 2n*t

We may rewrite equation (I1.2) into the form

£

P(v, t +t|v,) =

—o0

40(E. D exp {~ 2L 5w -5~ LE £y )x

(IL4)
X P(v—E&, t|v,).

\r.:nn expressing the Lh.s. as P(v, t[ve) + T3P (v, tlvo)/3t + O(z?), developing
the :.:omqm:a, except the function g (&, 1), of the r.h.s. into the Taylor series up to
the first order in t and second order in &, performing the integration and finally

32

comparing all the terms proportional to 7, we shall obtain the Fokker-Planck
equation

3P(v, t]ve) _ 0 8*P(v, t|v -
o llon) 0 OB tlve) X 3 (e, aLs)

which reveals a ““diffusion coefficient” in the velocity space

D. ==L (11.6)

APPENDIX III

Similarly as in the case of equation (I1.4) of Appendix II we may rewrite
equation (7) in the form

.

Pl t+eho)= | dég(e, v exp {LeF( - ) -5 - 5)) x

- 2n*

(IIL.1)
X P(x —E, lkov.

If we complete all the steps which led us from equation (I1.4) to equation (I1.5), we
shall obtain, in a perfect analogy, the Smoluchowski equation (10). It may be
pointed out, anyway, that the correct Smoluchowski equation could equally well be
obtained even if the expression F2(x — &) were replaced by F*(x): namely, when
expressions of the order 7& in the exponent of integral (III.1) are taken into
account, the integration in equation (II1.1) gives only terms of the order o),
i.e. the order which we were neglecting. The only significant point is to write the
7-independent term in the form (y/n) EF(x - &).

Of course, it is of interest to show what happens when the t-independent term is
written in agreement with Feynman's rule. Then we have to investigate the
equation .

L 45 gE D exp (Ler(x-1e) 5T P x

H(x, r+1lx,) = 27

—2

X I(x — &, t|x,). (111.2)

Again, by following the procedure that has led us to the Smoluchowski equation,
we shall obtain the equation

OII(x, t|xs) _ n° 3M(x, tlx)) 1 (3F B
ot - N.v\u ax? N.v\ Am‘ﬁv :AH‘ N_.R:v Ammm@y
1 oG, a_b.v.
Y ox
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(6F/ax) I (x, t]x,).

What is very interesting is the fact that if the inequality (6) were reversed into an

m::oﬁw:zw looking equality, i.e. in other words, if the path integral (3) were
decomposed into the form

II(x, t]xo) = exp Wm.:\?vu Sai \ Px(t) exp m IN’MNx (IL4)

% \o. drfyx?(r) +~u~QA.&L.

transferable into probabilistic applications.

If we wished to be formally rigorous, we o:mr.n to use, in case of the probabilistic
function P(x, t|x,), a different symbol from J,say M.p. [ (a deliberate proposal, as
M.P. is abbreviation for the “Markov process”) in the exponent of the path ::om,am_
(3), reserving the symbol [ (understood in its traditional meaning) for the 960:@3
In the path integral representing the function IT(x, ¢ |x5) and, of course, for
€xponents of quantum mechanical, or quantum statistical, path integrals. Thus, we
should write, instead of formula (3), the path integral

X

Pt =" @x(r) exp * lw% M.p. \ . &E:TEHQENT
) (IIL5)

H :1“ @k?vﬁﬁ ?’m M.p. \... dzx(t) ﬁo«?vvw X -

Xiesp A - NMN \ . &?%S%ﬁ@i.
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~M.p. \ %Sml“\_:%# V(o) — V(x) (I11.6)
and
- \ %Smﬁ:ﬁ = V(xo) = V(). (11.7)

The same careful formal distinction between the symbols { and M. p. [ should be
made in the corresponding exponents of path integrals dealt with in Sections IV
and V. (Namely, the integrals in the exponents of formulae (13), (19) and (22)
have obligatorily to be understood in the sense of “Markov process integrals™,

APPENDIX IV

In the preceding appendix, we have discussed rules of the proper path integration
provided that a path integral (integral (3)) was already put forward before. Now we
will scrutinize the way how the path integrals corresponding to nonlinear Langevin
equations can be derived. The chief difference between the present and former
derivation (which was given in Section IIL.1 of Part 1) is in the point that now the
Jacobian J =|of(z)/6x(z)| may be, owing to the nonlinearity of equation (1),
path-dependent. To show this, we may discretize the time interval (0, t) by dividing
it into N equal subintervals so that 0<1<..<ty_,<tx=t and rewrite the
Langevin equation (1) as a difference equation. According to a recent paper by
Kitahara and Metiu [5], generally the discrete transcription of the Langevin
equation (1) may be taken in the form .

Y F R (W () + (1~ ) F)] = f,, (v.1)
where i =0,1,...,.N—1; x, =x(t), i=f(t), t=t;..,—t,=1/N. If t—0, equation
(IV.1) goes over into equation (1) for any value of pu. Nevertheless, we would
rather call, for u+#0, the stochastic process described by equation (iv.1)
pseudo-Markovian. For a pure Markov process we require u =0, following the
philosophy of the Markov processes that a next state x,., actualized after elapsing
an infinitesimal time T must be determinable, respecting the deterministic force F,
purely from the present state x,. In other words, we find it difficult from the point
of view of classical causality to accept a definition of a dynamic Markov process
whose next state x,,, is dependent on itself via the causal influence F(x,,,), in
addition to the influence F(x,). Such an argument, of course, does not apply to the
random force f(r), which is assumed to operate independently as a deus ex
machina. There is no other reason but convention that we have written, following
Ref. [5], f..\, and not f,, on the r.h.s. of equation (IV.1), For the proper definition
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of the ooqomvo.:&:m path integral, however, it is not at all immaterial whether we
use the discretized Langevin equation in the form
Xiv) —X;
T

Y
or

Xiv1 — X;
T

Y —F(x)=f. (Iv.3)

Indeed, the Jacobian

} J= Ofis fos ooy frn)

2

(xy, xz, ..., Xno)| At 3x
has different values, respectively :
_ .M\n N—-1
=4, (1v.4)
N 17 3F(x)
=) ey a5 )
Aﬂv Xp b dr x o (Iv.s)

To prove the last expression, we may divide the number of the subintervals into
N/n E.ooxm so that n— % and also N/n — w when N, and 3F/ax may be
approximated as a constant within each block o“u:mmmazm of n adjacent subintervals.
Then we may use the limiting procedure (1+a/n)"—e" that gives, for g =

=(At/y) 9F /3x, where At=1n, the expression exp {(At/y) 3F/3x}. After ex- .

hausting all the blocks, we obtain the exponential (IV.5).).

H.:a expression (IV.5) and the corresponding equation (IV.3) are, in fact,
on::.\m_n-: to the Kitahara-Metiu relation aV.)) with u=-1. -

It is not difficult to define suitable rules for the path integration respecting the
Qm:mmo:sm:o: (IV.1). When introducing (in the spirit of Appendix III) a m,no&m_
notation M.p. (u) | defined by the formula

M.p. (u) h dr x(7) F(x(t)) HZML (Xiwr =) F(1 = p) x4, +px.),

(IV.6)

we may write the path integral (3) in the form

x.,t

P, tlx)= [ @x(r) ni J\m .imﬁ:é? av.7)

x0.0 0 ox

<o {33 Mop. ) | dnlrie) - Fx(oF ).
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For the transition probability function P(x, t|x — &) with an infinitesimal value T,
we have thus, as a counterpart to formula (8), the expression

w@‘q_almvnmmwwwmv:“nxnAltﬂﬂmﬂwoxuAI%TWIE\«I:@HW\ v
.8

(since x;.;=x, x,=x—E). The apparent u-dependence is irrelevant, as the
Chapman-Kolmogorov equation (7) gives, whichever value  in function (IV.8) is
used, the Smoluchowski equation (10) that is not anymore dependent — as
a well-defined physical equation — on the nonphysical, arbitrary parameter u. In
this way, we have shown that in order to eschew any confusion (or at least
superfluous ambiguities mentioned in Ref. [5]), it is sufficient to make a simple
formal distinction between symbols used for integrals occurring in the exponents of
the path integrals.
Finally, notice the formal identities

M.p. (0)=M.p. [, (IV.9)

o))}

directly deducible by comparing the definitions of Appendix III with the definition
given by formula (IV.6).
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