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PATH -ZHHG—?PFm FOR INERTIALESS CLASSICAL
PARTICLES UNDERGOING RAPID STOCHASTIC
TREMBLING (1. EXAMPLES)

VIKTOR BEZAK®*, Bratislava

Feynman's path integrals are studied in reference to the Fokker-Planck (Smoluchow-
ski) equation. Examples are presented including the motion of an inertialess classical
charged particle between electrodes in plate and cylindrical capacitors with charges
fluctuating rapidly as Gaussian white-noise stochastic processes. Another example
concerns magnetodiffusion of a charged particle in an unpolarized electromagnetic beam
characterized by a white-noise spectrum.

HMHTEIPANBI IO TPAEKTOPHAM IS HEMHEPIMOHHBIX YACTHIL,
TNIOABEPTAIOHMXCH BHICTPOMY CIYYAHHOMY BHEPANMOHHOMY
BO3AEWCTBHIO (I. IPHMEPHI)

B pa6ore paccmaTpusatoTes (beAAHMaHOBCKHE HHTErPaNB! O TPACKTOPHAM B CBA3HU
€ yYpaBHenuem Pokkepa-Tnanka (Cmonyxosckoro). B kauecTse NPMMEPOB MPUBORUTCS
ABIKEHHC HEHHEPUMOHHON 3APSKEHHOM KIIACCHYECKO YacTHIbl MEX]Y 3NEKTPOAAMH
KOHIEHCATOPA ¢ NITOCKMMH H LI MHAPHYECKHMH AOCKaMH, Ha KOTOPBIX 2Pkl MCITLIThI~
BalOT Gbictpue ayxryaumu THna TayCCOBCKOTO CNYYaHOTO UIYMa C PaBHOMEPHLIM
cnexTpoM. Cnenyromuit npumep paccMaTpuBaeT MaruuToRMdDY3MIO 3apsKEHHOM Yac-
THUEL B HCNONAPH3OBAHHOM 3NEKTPOMATHHTHOM NY4KEe CO CNEKTPOM 6eNoro myMma.

L INTRODUCTION

The Feynman path integrals [1] were devised, and continue being used, as a to
enabling to anatomize quantum-mechanical concepts. They are free of noncom-
mutative operators and this is their most attractive property. Although in the
majority of quantum-mechanical problems the usual operator treatment proved to

be more effective than the path integral one, the latter did lead to new achieve-

ments at which it would be difficult to arrive in another way. This was first
manifested by Feynman in his theory of liquid helium and polarons {1]. More
recent efforts to use the path integrals concerned, after a paper by Edwards and
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Gulyaev [2], quantum-mechanical and quantum-statistical calculations of sim-
plified models of disordered solids. One of them which was devised by the author
with appreciation of its exact solvability — a model of semiconductors with
randomly fluctuating bands [3] — yielded, when the path integral technique was
applied, mathematically simple results (cf. e.g. [4], [5], [6], [7] for mathematical
amendment and [8], [9] for applications).

There are, therefore, good reasons to look for other applications of the path
integrals. In particular, the path integrals are naturally expected to be applicable in
a theory paying heed to stochastic motions. The aim of the present contribution
which consists of two papers (Part I and Part IT) is to support the statement by some
examples as well as by a general mathematical analysis.

The purpose of the examples presented in Part I is to give some sound motivation
for the abstraction and mathematical details given in Part IT including its Appendi-
ces. The basic point to which we will punctiliously adhere is the assertion that
a certain class of Gaussian stochastic processes of white-noise type is equivalent to
a class of the path integrals. With reference to such equivalence, it is easy to
juxtapose each path integral to a partial differential equation identifiable with the
Fokker-Planck (Smoluchowski) equation implied by the corresponding stochastic
process.

The examples were intended to be addressed to theorists but they do offer also
possibilities for some simple and interesting experimentation. In Sections III. 2 and
IIL. 3 of the present paper we shall show that the mobility of a charged Brownian
particle situated between electrodes of a plate or cylindrical capacitor, respectively,
can be controllably enhanced if the charge on the electrodes is contrived to undergo
violent Gaussian white-noise fluctuations, inducing thus an electrical, stochastically
trembling force. Similarly, some enhancement of the Brownian motion can be
induced by illuminating charged particles by intense white-noise electromagnetic
radiation (not necessarily white light). Such a problem is shown to be easily
solvable even when a longitudinal d. c. magnetic field is applied (the magnetodiffu-
sion discussed in Section IIIL. 4). For all the examples, explicit formulae are derived
for the ,.diffusion coefficients” as functions of the magnitude of the stochastic
force.

Part II (the sequel of the present paper) will deal with technical and conceptual
nuances in the use of the path integrals in probabilistic applications. Detailed
attention will be paid to mathematical questions arising from the non-differentia-
bility of the paths of the path-integral theory. In particular, we shall show that the
integrals written in the exponents of the probabilistic path integrals are not, in
general, the same notion as the ordinary .Qﬁnsmcs-hocowm:ov integrals. We shall
call them the “Markov process integrals” and suggest in what way they are related
to the usual integrals for which the classical calculus applies.

Although the assumption of the white-noise property will be basic for our
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treatment, we shall also indicate difficulties arisen in attempts to omit this
assumption. Finally, we shall also suggest a generalization of our theory to systems
of an arbitrary number of degrees of freedom.

II. PROBABILISTIC EMPLOYMENT OF THE
PATH INTEGRALS

A pattern of a stochastic theory related to the path integrals is the theory of the
Brownian motion as presented by Wiener. The mathematical literature develop-
ing Wiener’s ideas is extensive (of. e.g. the monography by Yeh [10]). However,
much of the mathematical literature is hardly intelligible to physicists who need
simple methods of calculations. Practical instructions how to develop stochastic
theories in a language better comprehensible to physicists were given byFeynman
[1]. For this reason, we will use Feynman’s notation and when speaking about an
“integral over Wiener measure” we have in mind the same item as the Feynman
(functional) “path integral”,

The Wiener stochastic process along a line (x-axis) is described by the diffusion
(Einstein) equation . :

3P (x, a_kchU *P(x, t|x,)
ot ax?

s P(x, +0|x0)=6(x —x,). , )

The function P(x, t|xo) is the conditional probability density mow a Brownian
particle to find itself in the point x at the time ¢ >0 if it was definitely in the point x,
at 4,=0. It is given by the path integral

P(x, lkb"\ Dx(7) exp AIIHIR. dr ».m?.vw, )
%00 4D [}
where x(7) is a general continuous path conn cting the points x,, x so that
x(0)=xo, x(t)=x. The meaning of the symbol N Px(z) for the functional “path
integration” was thoroughly explained in [1]. If the motion of the particle is not
restricted by boundaries, the solution to equation (1) is the well-known function

N
P, ) =g exp { - ) 3)

There is, however, also another type of a stochastic problem, where not an
equation like (1) is prescribed but vice versa rather a path integral can be derived
in advance for a stochastic process. If we have the path integral at our disposal, we
may utilize its equivalence with the Fokker-Planck equation due to the process and
solve preferably the latter instead of carrying out the functional path integration.

As an example of a probabilistic problem, Feynman and Hibbs discuss briefly
(without entering mathematical details in Section 12.6, [1]) the path integral due to
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a classical damped harmonic oscillator driven by a rapidly fluctuating force f(r).
The dynamics of the oscillator is described by the stochastic differential (Langevin)
equation

mx + vx + kx = f(¢), )

where f(¢) is a Gaussian x-independent random function whose mean is zero and
the autocorrelation function ( f(t") f(¢")) is of the white-noise type:

(F@) FEY =m8(e =17, (f(e)) =o. (%)

The brackets ( .v denote averaging with respect to the fluctuations of f(¢). The
corresponding path integral ’

P(x, N_éuﬁ_.”. P (=) exp mlwwl \ . Eiﬁiisiﬁﬁi 6)

is clearly of a more complicated structure than the Wiener integral (2). Never-
theless, to exemplify the correspondence between a dynamic equation like (4) and
a path integral for P(x, ¢|x,), it is sufficient to consider (for the sake of simplicity)
an inertialess particle when m =0. Then the path integral (6), and more general
path integrals related to it, remain to be functional integrals with respect to the
Wiener measure. In such a case it is frequently only a matter of comparison to
obtain the partial differential equation of the Fokker-Planck type for the probabili-
ty density P(x, t|x,).

The problems solved below involve both the presence of boundaries from which
the particle cannot return back (“‘absorbing boundaries™) and the presence of
some « deterministic force F(x) sharing its exertion on the particle simultaneously
with the stochastic force f(t). The coefficient of friction v will be taken in all cases
constant.

Iil. EXAMPLES

IIL.1 One-dimensional Brownian motion
without boundaries

The basic stochastic equation is reduced to the form
vE =f(t). (7

This equation is a good approximation to equation (4) for k+0, but k—0,
whenever the condition

m<y*k (8)
is satisfied [11]. The probability that the random force f(¢) has its actualization
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within an infinitesimal stripe (f(t), f(r) + 6f (7)), O<r <1, of(t) >0, is given by the
expression

PUEN=L exp {~oL [ o), ©)

where the normalization constant G is defined by the functional integral

6= sreexp (-5 [ ar pio).

Alter replacing f(z) by y#(r) we obtain the probability that the path x(z) of the
particle has its actualization in the stripe (x(7), x(7) + 0x(7)), 0<7 <!, ox(1)>0:

1 18f(z) 1r ;
P, =— 1L - 2
[x(7) G |ox(0) oxwﬁ N:Nh dr ?L. (10)
The symbol _u\?ima?.: =J denotes the absolute value of the Jacobian for the
transformation {f(z)} > {x(r)} determined by relation (7). The Jacobian is no
more buﬁrdnnnaaocﬂ since the relation (7) is linear. Therefore, we may define the
functional differential Dx(7)=(}/C;) 6x(z) and take the path integral

Pz, ~_€uhw Bx(z) exp ,ﬂum% \ dz E& 1)

as properly normalized so that

dx P(x, tx,)=1 (12)

—o0

for all values of x, and ¢>0. The path integral (11) fulfils the equation
P(x, n_kovn n’ 3°P(x, t|x,)

ot 2y? ox? " (13)
Its solution with respect to the initial condition P(x, +0|x,) =8(x — x,) is
S 4 e
P =—_7 - — xo)?

A.Nu N,_Rev ANNHNV:N ) €xp * N.anﬂ A.x. \«cv w. ANAV

Hence, by compating (14) with (3), (13) with (1) or (11) with (2), it is seen that

2

D=1 (15)

2y*

In a physical application we might investigate a light — “massless” in the sense of
the strong inequality (8) — particle subject to some rapid trembling force of
a strength measured by 7, whilst the environment resists the motion of the particle
proportionally to y.
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It should be pointed out that D does not correspond to what used to be called
“turbulent diffusion”. Namely, the latter presumes random convections. This is not
the case. Formula (15) corresponds to the diffusion called forth by some trembling
force (say, electrical field) letting the liquid (assumed to be electrically neutral and
unpolarizable) in which the particle is submersed, be practically quiet, except for
a close region around the particle.

IIL. 2 Presence of boundaries

The simplest problem of interest with boundaries is the Brownian motion
between planar plates of a capacitor. Let the coordinates of the plates be x, =0,
x;=a and the medium between them a liquid dielectric of permitivity £. We
assume that a surface charge of density o(r) = g, + Aa(¢) is induced on the plate 1,
the charge of the opposite plate 2 being — o (). The electrical field between the
plates is E(¢)=o(¢)/¢ and a Brownian particle of charge q is driven by the force
f(t)+ F(x), where

f(ty=qAo(t)/e, F(x)=gqo./c=F. (16)

If the charge of the capacitor suffers Gaussian white-noise changes defined by the
autocorrelation function

(Aa(t)Aa(t")) =n26(t' 1), (Ao(r)) =0,
we have the dynamic (Langevin) equation
v —F=f(1) (17)

with the Gaussian random force f(r) satisfying relations (5), where n=n.q/c. The
path integral

P(x, t|x,)= . Dx(T) exp A INMN \ ali?vlﬂ“w (18)
X0 (4
can be rewritten, by using the transformation
x'(t')=x(r)-Frly, v =rt, (19)
into the Wiener form
P )= [ @x'(x) exp m ;%\ dz %gi, (20)

where xi=1x, —Ft'/ly<x'<a —Ft'ly, —Ft'ly<x!\<a —Ft'/y.
The paths x’(z) in integral (20) are confined in the interval A =(—-Ft'/y,
a —Ft'/y). The confinement can be proven as follows. Let us define the function
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I,(x) equal to unity if x belongs to A and otherwise zero, and write down a more
general path integral

Pocefegy= [ '@ exp |- [ 4ty - [ g v
o 2XC 27 |, RCLAZEIO)
(20a)
with unconfined paths: —0<x'(1)< o, (The path integral (20a) with the

¢Xxponent enriched by a “‘potential-energy term” usually termed the “Feyn-

ManW.mn integral*“ by some authors.) The differential equation corresponding to
a) is

~

APy(x’, ¢'|x}
ZivlX, txo) : _avn =V(x') Po(x', t'|x}). (21a)

or

n’ 3P(x', t'|xd)
NQ\N ®\<-

For our proof, we specify the “potential energy”:
«\A.Hv”MHleAH: Vo, a\o”OOﬂmHVO.

Qo.mn_vo we can now:Nm the confinement of the paths x'(7) into the region A by

letting V, tend to infinity. However, from the presence of V in the exponent of

(202) we can deduce that, for x’ lying out of A (and then also for Xolyingout of A),
V(x') Pu(x’, t'|x5)—0

if <o.|w ®. Thus, we may omit the last term- of €quation (21a) and write the
equation

P(x', t'|xg)  n? *P(x’, t'|xf)
o T2y apr o P(LH0k)=6(x'-x)),  (21)
or equation
3P (x, N_B.VHH °P(x, t|x,) FaP(x, t]x)
ar 2y x> Ty ax ¢ (22)
P(x, +0[x0) =6 (x - x,), (22a)

for 0<x <a, 0<xy,<a. The limiting procedure Vo— % is tantamount to the
Statement that the surfaces x =0, x =a are absorbers of the Brownian particles

Say, whenever a particle touches the plate, it remains stuck on jt. Then we have the
boundary conditions

P(0, t|x,) = P(a, tlx)=0. (23)

Equations (22), (22a) and (23) determine the conditional probability density
1??;&.& completely. We may use the function P(x, t|x,), for instance, in
calculating the probability
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P

\ dx P(x, t]xo)

0

that a particle starting from the point x, at the time t,=0 will escape absorption
either on the boundary x =0 or x =a, i. e. it will survive in the interior space
0<x<a, up to the time instant ¢.

Of course, if the boundaries x =0, x=a were ideally reflecting, i. e. not
absorbing, boundary conditions (23) would be replaced by zero values of the
normal derivatives 3P(x, t|x,)/3x on the boundaries and the integral
J5dx P(x, t]x,) would become equal to unity for all values of x, and =0,

The unique solution to equation (22) with respect to conditions (22a) and (23) is

PG tlx)= 3 [Pr(x+2na, tls)~ P ~x +2na, clx)],  (24)

n=-—o

where we have denoted

a H N Fr 2
Pr(x, a_kcvu.@%wwxv AIN“- Aklﬂlxov (25)

(a function defined on the whole real axis, — o <x < ),

Notice that if equation (22) were solved directly by the Fourier method, the
result would look differently (involving trigonometric functions) but could be
transformed into the form (24) by using the Poisson summation formula. (This was
shown by the author for F =0 upon another occasion elsewhere [12]).

Thus we may conclude that the random temporal changes of the capacitor charge
can be used for separation of colloidal particles. By intensifying the strength 5 of
the trembling, the diffusion can be considerably enhanced at will.

III. 3 A cylindrical capacitor

. The idea of section III. 2 can be further developed for a cylindrical capacitor. We
have in mind a thin wire along the z-axis with some charge density {(¢) and the
second electrode charged oppositely, determined by the radius 0 =a. The electrical
force f(o, t) + F(p) acting upon a charge ¢ of a Brownian particle is directed
radially. Again, if £(¢) = &, + AL(t) where AL(¢) is a Gaussian random component,
(AL(1)) =0, (AL(t') AL(t")) =n26(¢' — "), we obtain

_948() - 9%
fle,n= Ineg ? T 2meo (26)
and the dynamic stochastic equation reads
. _ 9% HQBNQN
e 2rep  2mep @n
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Fortunately, we can rewrite this equation into the form

M lal 2 q& q
274 @ Iwhmlulﬁm.Bva. (28)

where the “random force term”

) (the r.h.s) is o-ind
write down the path integral ) is o-independent. We can, therefore,

o2

P(e? to)= Do*(t) ex * = \ T ; =
: ) pi- dz|5 y —— 0*(r) - 12
" 7 b 57 g e@-22T] )
However, since P(p, t|oo) deo = P(o?, t[02) d(p*) and
P(o, +0loa)=5(0 - o) G0
Wwe may write the initial condition (30) reformulated
P(o*, +0l03)=5(0*-03). (30a)
The path integral (29) implies the equation
9P, 1ed) _ _a’ni 8°P(e%tlod) qt, 3P(o%, t]gs)
at 27%e*y*  3(p?) " ey 3(e*» - (ala)

If the electrodes ideally absorb the particles, we have the boundary conditions
P(+0, 1]03)=P(a* t]o2)=0 (32a)

and the solution P(g? tlod) is simi i
»£]@0) is similar to solution (24). H. i
P(o, t]g,) satisfies the equation A HeE, the fonctyg

9P(p, tloo) _ C, 3°P(p, H_?.v 1 /3C
L

3P (o, tlos
x| IE_@L&E, tlea) |

dg

where C, =X A qn: VN‘ C,= 98

2 \2mey ey’ and the boundary conditions

P(0, t|0o) = P(a, t|g,) = 0. (32)

ma:m:ﬁ.usm @C m:a.@ 1a) correspond to the assumption that the Brownian nman_,om

Eo<m. (in o:.n idealized case) along radial rays 0< g <a with fixed coordinates z

and fixed azimuthal angles a.

S:NM m.:_ﬂzm _..saooa that equation (31) does not resemble (unlike equation (22)
!5 identical with) the usual diffusion equat i indri

b il quation, right when cylindrical
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In analogy to function (25) it is natural to define the function
_ " ey n’e’y’ qlot  \?
Pefo, tlog)= ANHV an: P * 2q°nit Ae 2ney Eov (33)

with the definition region on the whole real axis: — ® <@ < ®, — 0 < @,< . The
solution to equation (31) with respect to conditions (30), (32) —in correspondence
to solution (24) — is

P(o.tlos)=20 2 [Pg(e®+2na* tlos)— P (~0’+2na% tlod)]. (34)
It should be emphasized, anyway, that the transition from equation (27) to
equation (28) was a lucky step that cannot be repeated generally”. In general, we
should consider a path integral containing a “kinetic energy term” dependent not
only on the time derivatives x(t) of the paths but also nxv:n:_w on x(1) (or o(7),
r(t), etc.). Path integrals of such a sort occur commonly if curvilinear coordinates
are used. It is not at all always easy to find a transformation to Cartesian
coordinates for which one could utilize results known from the theory of Wienerian
functional integrals.

IIL. 4 Magnetodiffusion in an unpolarized
“white” electromagnetic radiation

A charged particle of charge ¢ finds itself in a uniform, temporally constant
magnetic field B = (0, 0, B). Moreover, the particle is placed in a beam, parallel to
B, of unpolarized electromagnetic waves whose distribution in frequencies mimics
a white-noise spectrum. Then the fluctuating force f(¢) is perpendicular to B and
the components f,(t) =qE,(¢), f,(t) = qE,(t) represent independent random fun-
ctions of zero mean ({f.())={(f.(6))=0, (f.(t)f.(t")y=0 with a common
white-noise autocorrelation function

(f() (@) =) L,U7) =q’ned(t' —1"). (35)
In this case, the stochastic equations of motion read
vX —gqBy =f.(1), vy +qBx=f,(1). (36)
If the random force f(¢) is Gaussian, the corresponding path integral is
Y &
x .1 yd m+ umm
P(xy, t|xoyo) N\ Dx (1) Dy(t) exp ”|<|NIQM~:| X 37)
xo-0 ya.0 E .

x % .~ de[#(z) + %3;.

"' However, it can easily be repeated for a spherical capacitor, say.
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N ; . ; ;
M&M”. ”.nr identity (vt —gBy)? + (vy +qBi)’ = (y*+ q°B*)(%*+y%). So we can
1sh the Fokker-Planck (Smoluchowski) €quation to our problem:

By, tlxoye) gz 3 &
ot NAQ\N.‘TQNwNv A@'.&NITMWMV WAH.Y. N_.Hcv\cv, AMWV
P(xy, +0]xoy,) = O(x —x,) 8(y ~¥Yo). (38a)

As seen readily by compari i
. : paring equation (38) with equation (1), we h i
derived an effective coefficient of “magnetodiffusion” 0 e i fact

.Uu = QNQM |

IV. CONCLUDING REMARKS

The present paper has been meant as an introduction to the subsequent one (Part
II). Having followed the basic idea that each solution of the Fokker-Planck
(Smoluchowski) equation could be represented by a Feynman path integral in
ooqomnonaﬁ..on to a stochastic Langevin equation with a Gaussian random force of
the white-noise, we dealt only with special cases by having chosen the deterministic
component F of the force in the Langevin equation either absent (Sections III. 1
and III. 4) or constant (Section III. 2), or at least by having assumed that the
EoEoﬂ .oo.:E be nwmummonﬂnn_ in such a manner that any x-dependence of the
MmﬁoMS_Emcn term in the Langevin equation would be cancelled out (Section

-3). In all such cases, and even more generally, if F(x) is a linear function in
argument x, the use of the path integrals can be effectively avoided when we are
Interested in simple average values like ((x(®) = (x(£)))?). Such, or similar, values
can cn. calculated, owing to the linearity of the Langevin equation, ww anmauani
m:m_ﬁ_ow_ methods which eo ipso offer excellent possibilities for checking the
correctness of the path-integral calculations. For linear Langevin equations,

M%me_oh m:.m_v&nm_ calculations are feasible both when the stochastic force f(r) is
of the white-noise type and even when it s not Gaussian (cf. Appendix [ after the

subsequent paper). No such simple possibility is available if the deterministic force
F(x) ~.=m_8m the Langevin equation substantially nonlinear with respect to x and the
E.:: mtegrals, as well as the Fokker-Planck (Smoluchowski) equation associated
with them, turn out considerably more valuable. \

(of Section III 1) due to th
e 1L € external tremblin force, the th
coefficient given by the Einstein formula ’ ° fhermal diffusion
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D, =%, (40)

where ks is the Boltzmann constant, T absolute temperature and y the friction
coefficient. Obviously, the theorizing given in the present paper is justified by the

condition
Dy <D, _ (41)

which means that the strength n of the external trembling force has been chosen
sufficiently intense in order to surpass the ubiquitous thermal Brownian motion.
Taking the Brownian particles as a statistical ensemble, we may define an
“effective temperature” T,{7n) corresponding to the ‘“trembling-assisted dif-

fusion’’: Ty
N;n\\ASV = N\ﬂm.v\ b A&Nv

(In this a.oma.monq we have tespected the Einstein formula (40) and formula (15)
for D). The condition (41) may be rewritten in the form

T<Tn), (43)

which indicates that the ensemble of the Brownian particles as a whole might be
interpreted in our theory as “hot”. The “effective temperature” T.{n), of course,
does not refer to the true temperature (measuring the internal energy) of the single
Brownian particles. The amount by which the particles are actually warmed up
would be calculable by a painstaking analysis taking into account the kinetics of the
heat exchange between the particles and their environment.
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