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DESCRIPTION OF MULTIPARTICLE PRODUCTION
BY MEANS OF CHAPMAN-KOLMOGOROV EQUATIONS

VLADIMIR MAJERNIK*, Nitra
JOZEF PROKES**, Bratislava

It is pointed out that at least three models for multiparticle production lead to a set of
Chapman-Kolmogorov equations in which the transition probabilities occur as the input
parameters. Since the transition probabilities provide generally more information about
the internal dynamics of the high-energy multiparticle process than the set of the final
probabilities for the production of n particles, we have determined them from the
multiparticle distribution. It is shown that these transition probabilities represent
a simple function of the laboratory momentum which may help to determine the
dynamical parameters of the multiparticle processes. ’

ONHCAHME MHOTOYACTHYHOHN MNMPOIYKIHMH C MIOMOMBIO
YPABHEHMH
YENMEHA — KOJMOrOoPOBA

B pa6Gore nokasaHo, YTO MO KPailHEd MEPE TPH MOEAU I8 MHOTOYACTHIHOMN
NpOAYKUMH NPUBORAT K HaGopy ypaBHenuit Yenmena — KonMoroposa, B KOTOpbIX Be-
POSITHOCTH [IEPEXOROB BLICTYNAIOT B KAYECTBE BXOJHbIX NapaMeTpoB. Tak kax BeposT-
HOCTH NEPexof0s AAIOT, B OGILEM, O BHYTPEHHEH JIMHAMHKE MHOTOYaCTHYHOrO fIpoLECcca
NpH BLICOKHX 3HEPrUAX Gonbiuyio vagopManmio, 4eM HaGop KOHEYHbLIX BEPOATHOCTEH
s npofykunK N HacTull, Mbl MX ONpPEAENAEM M3 MHOTOYACTHYHOIO pacnpeicieHus.
IMokasano, 4TO 3TH BEPOATHOCTH NEPEXOKOB NMPEACTABNSIOT NPOCTYIO (PYHKUMIO MM-
nynsca B nabopaTOpHO# CHCTEME KOOPAMHAT, KOTOPLI MOXET MOMOYL ONpeNeNuTh
NHHAMHYECKHE NMapaMeTPbl MHOTOYACTMYHBIX MMPOLECCOB.

1. INTRODUCTION

" There are at least three phenomenological or semiphenomenological models for
multjparticle production which lead to the same general system of linear differen-
tial equations (called Chapman—Kolmogorov) in spite of the fact that the physical
arguments in them are different. The first model is the string model [1] within the
framework of which the high-energy scattering process is described as an interac-
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tion between two strings at their end-points. The input momentum by a high-
energy collision propagates along the strings (representing general hadrons) to
5@:. ends whereby these strings decay into a number of fragmentary strings
Bm:_mmwc.zm. themselves as the outgoing hadrons. Under general conditions the
fragmentation process can be described by means of the equations HN,T )

d
ax Pi®)==p(x)P(x) 1)

: n=2,3, ...

d
& PO =P (P (1) - P, (X)P, ().

Here x means the distance from one end of the string to the point of the string
where the string is divided. We see that instead of time we have the distance in the
set of differential equations of the Chapman—Kolmogorov type.

‘ﬁ_m. second model describing the high-energy multiparticle process that leads to
a similar type of differential equations is the well-known jet model [3]. The
Chapman—Kolmogorov equations in this model have the form

P(1)= M [9.(n —il)P,_ ()= q(n—i+1/t)P, . ()] )
. n=12 ..

Here g,(n — i/t) represents the transition probability from the state with (n — 7)-th
particle to the state with n particles and P,(¢) is the probability for the production
of n particles.

The third model leading to the system of linear differential equations of the
Chapman—Kolmogorov type is the so-called Markov one [4], [5], within the
framework of which one assumes that the particle production is realized via the
excited states of the hadrons (resonances) in two basic stages: (i) the interaction
.mSmP in which the hadrons are excited into higher energy levels by means of the
incoming particles; (ii) the decay stage in which the excited hadron decays
producing secondaries. The Chapman—Kolmogorov equation of such a Markov
system has the following form:

55 LP . . 3)

where P represents the vector of the final probability distribution of the excited

hadronic states P,, P,, ..., P, (the probability that the excited hadron decays into n
secondaries) and

196

oo qor -+ dw

H Q_c Q: Q.j
L= :

4o Gur -+ Gun

where g, represent the transition probabilities between the corresponding states.

In all the mentioned models there is a direct connection between the multiplicity
distribution and some kind of transition probabilities. Many authors have tried to
find a phenomenological description of the multiplicity distribution for the
accelerator energy in order to determine the multiplicity distribution for higher
energies by extrapolating the found regularities, e.g. [6]. The multiplicity distribu-
tion represent, however, the final products of some processes taking place in the
high-energy collision [10}. We can expect that the set of the transition probabilities
stands closer to the dynamical processes occurring at these high energies than the
final multiplicity distribution, therefore the set of transition probabilities in the

" Markov model might represent a link to the inner dynamics of the considered

hadronic object, at least at the level of its statistical description [7]. It seems,’
therefore, physically reasonable to determine the set of the transition probabilities
occurring in the Chapman—XKolmogorov equation in order to find their depend-
ences on the momentum of colliding particles. This enables one (by using these
dependences) to find the set of transition probabilities above the region of the
accelerator energies. Having ascertained this set one can determine the final
multiplicity in the region of the very high energies by means of the corresponding
Chapman—Kolmogorov equation. In order to find the transition probabilities
mathematically we have to eliminate them from general Chapman—Kolmogorov
equations.

11. THE INVERSE PROBLEM FOR THE CHAPMAN—KOLMOGOROV
EQUATIONS :

In the common calculation within the probability theory one puts the transition
probabilities (by the description of ‘the multiparticle production with some as-
sumptions about the multiparticle process) in the corresponding
Chapman—Kolmogorov equations and from these one determines the prob-
abilities P,, ..., P,. Since, as said above, the transition probabilities may contain
generally more information about the internal dynamics of a hadronic high-energy
process, the problem to find them from the Chapman—Kolmogorov equations (by
putting the experimental final probabilities into them) seems to be physically
well-motivated. We therefore assume that the mechanism of the multiparticle
production can be described by means of a system of Chapman—Kolmogorov
equations (as it is required by the above-mentioned models) — and thus the set of
transition probabilities will be determined. In other words, we solve the inverse
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problem indicated by the Chapman—Kolmogorov equations. In the general case,
the problem would be mathematically very complicated, therefore we confine

ourselves to a simple form of Chapman—Kolmogorov equations, namely, the
following ones :

”.IQ_E_ c4 v Ahv
Q.Nu.l&»ﬁm

P,
P,

P,=q, \P,_,—qP,

where we assume that generally q,# q,+# ... #q,. Within the framework of the
Markov model this means that a transition exists only between the nearest excited
states. According to [5] the general solution of Eq. (4) has the following form

P, =exp (— q,t) AE sv hﬁﬁ exp M (i~ q)E] X dE, dE,...d¢, _,.

(4a)
In the special case of ¢, =¢q,=... = 9. we get the well-known Poisson probability
distribution ‘
P ()= Mkﬁlvwlv__ exp ( —q1), k=1,2,...
The solution (4a) of Eq. (4) can be rewritten in this form .
P(t)=exp (— q,1) ®)

P()= _mxmullw._o +.2M_A|:~M~i 4.

rg= (T exp (= 4.0)
® Aq i rslq_:«:_13...§|§+
exp (—q,t)
HTAQ»|Q~vﬁa~»v_IQNV.ZAQQ—IQNVAQ_|Q~v+-...+
exp (—qut) ,
+AQ_IQ»VAQNIQ»V...AQ»LlQ»v“.

After a rearrangement, Eqs. (5) can be written in the form of a system of the
following equations suitable for our purpose

q,+In P, =0 6)
W.+\~lﬁNQN\Q.IGxUA|.Q~\vHO
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_ Pq.+q,) q;
w+w+th\ +2 L4 + F, —exp(—q.0)=0
1 2 3 2/ g, 7.4 q: 7.4 p q.t)
From Eq. (6) one can determine the transition probabilities ¢,, q., ..., g, if the final
probabilities P,, P,, ..., P, are known. By means of successive substitutions one can

easily prove that a certain root of one of these equations represents the correspond-
ing root of all the following ones, i. e. if the solution of the first equation of this
system exists, then the solution of the whole system exists, too. We calculated the
transition probabilities numerically by using a simple computer program. The final
probabilities given in Table 1 were determined from the experimental topological
cross-section of the high energy p — p scattering [8]. Inserting the final probabilities
from Table 1 into Eqgs. (6) we got the values of transition probabilities, in Table 2.

IIl. THE PHENOMENOLOGICAL ANALYSIS OF THE OBTAINED RESULTS

We see from Table 2 that the value for the transition probability increases with
the increasing momentum of the colliding particle. It is to be expected that the
analytical expression of the function will possess a simple form that can be read
from the plot of the transition probabilities versus the laboratory momentum. As
shown in Fig. 1 this function can be approximately written in the following form

g=a+bInp,, : N

where g, and b, are constants, the values of which are given in Table 3. We can see
from Table 3 that with the increase of the momentum p,, the constants a,
decrease, whereas the constants b, increase. The slope of the straight line b, in
Fig. 1 can be approximately expressed in the following form

b, =0.25+0.26i (8)

where i/ denotes the indices of the transition probabilities.

Within the framework of our phenomenological analysis one can next try to find
the dependence of the transition probabilities on the index / for the given values of
the laboratory momentum ’

q,=f(,p..). (C))]

From the linear and logarithmic plot of this dependence, showed in Figs. 2 and 3,
we can see that the empirical function of type (9) can be approximately expressed
as follows

qgr=w"+y"I (10a)
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Muitiplicity

P

\COC\IO\LI:&LAN-—CSC\I:!\UIALAI\J—OC\IJ\M&QJN—:’\U\&LAN-—U‘AWN——

P GeV/e

12.88

69

205

Table 1.

probability

0.397
0.449
0.134
0.019
0.001
0.328
0.402
0.198
0.060
0.012
0.295
0.375
0.216
0.084
0.027
0.003
0.000
0.154
0.275
0.252
0.174
0.088
0.041
0.012
0.003
0.001

0.107
0.170
0.212
0.177
0.135
0.105
0.052
0.026
0.009
0.005
0.002

P GeVic

24.12

50

102

probability

0.345
0.432
0.175
0.044
0.004
0.302
0.398
6.215
0.074
0.009
0.002
0.192
0.302
0.257
0.061

0.065
0.015
0.006
0.001

0.137
0.250
0.235
0.180
0.107
0.061

0.021

0.006
0.003

JR—————

P GeV/c q,
12.88 0.9238190
18 1.0641998
21.08 1.1147217
24.12 1.1973283
28.5 1.2207799
50 1.6502599
69 1.8708027

102 1.9877744
205 2.2349264
Table 3.
4
1 -0.41
2 -1.77
3 -2.3
4 ~3.41
5 -3.21
Prav
12.88
18
21.08
24.12
28.5
50
69
102
205 -
and

q>

0.5319489
0.742870

0.9280273
1.0084358
1.1403976
1.7470428
2.1038132
2.1613556
29611641

0.51
0.83
1.03
1.31
©1.33

w” and WP

0.923
1.064
1.114
1.197
1.220
1.650
1.870
1.987
2.234

Table 2.

qs

0.3824219
0.6626953
0.8463867
0.8973450
1.1500000
1.7769531
2.1984375
2.5064148
3.1032105

Table 4

44

0.1900391
0.3110352
0.6242188
0.4924011

2.2960938
2.5664063
3.6526856

-14
-1.0
-0.83
—-0.49
-0.2
+0.25
+0.7
+1
+2

log g?=w" +y°i

qs

0.00000
0.00000
0.00000
0.9500000

2.7734375
2.6968750
3.9021484

‘respectively, where w”, w* and y°, y* are given in Table 4.

qe

0.000

-2.87
-2.8
-0.9
-0.9
-0.2
+0.25
+0.41
+0.42
+0.7

(10b)

From Table 4 we can see that the values of y* and y” increase proportionally
with the increasing laboratory momentum. In order to extrapolate our results it is
necessary to know the functions y* = f(p,,) and y° = f(p.,), respectively, in the
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“ Fig. 1. The plots of the transition probabilities ¢q,, 4,, 4., g, and g, versus the laboratory momentum
(curvesa,b,c,dand e).

3 B .
° whole region of the accelerator energies. The values of y* and y* as functions of the
o * . laboratory momentum are plotted in Fig. 4 and 5. We can see from Fig. 4 that one
can write the function y” =f(p,,) in the form of a linear function

‘ | P m0m< \nu_
4 1288

° 18

* 21.08

v 412

= 28.5

5

* 69

« 102

v 105

q, 9, 9, 9, 9

e

' ! : Fig. 2. The values of the transition probabilities Fig. 3. The values of the transition probabilities
for the increasing index i in the linear-linear scale.  for the increasing index / in the log-linear scale.
d ‘ ‘ The parameter is the laboratory momentum. The parameter -is the laboratory momentum.
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y*=yi+0.9log p,, (11)
whereas (according to Fig. 5) the function y* = f(Pr) can be divided into two parts
P 12.8, 30 GeV/c
P 40, 202 GeV/c

For the values of the laboratory momentum P =31 GeV/c and 38.5 GeV we get
o . . :

y .o and y* =0, respectively, i. e. for these momenta the transition probabilities

are independent of the indices i. In other words, we have

y'=yi+3logp,,

y'=5,+0.25log p,,

4:=q,=...=¢g,

m.:a the multiplicity distribution becomes the Poisson one. The existence of the
simple uvosoanno_ommn& functions [7], [8], [10], [11] makes it possible to describe
the .E.::_vmao_m process in terms of transition probabilities and shows that these
mi:c:. a great regularity which can be used by the determination of the internal
dynamics of a hadronic collision, Further we can find the multiplicity by the

yaylne,)
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Fig. 4. The value of slope v from Eq. (10a) as

Fig. 5. The value of the si
a function of the laboratory momentum. sboratony momaimn

a function of the laboratory momentum.
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extrapolation of the distributions for such high laboratory momenta for which they
have not been experimentally determined yét.

Note that in the range of the laboratory momentum from 21 GeV/c to
102 GeV/c, the transition probabilities can be written in the following approxima-
tive form

q9.=4q,+¢,

where ¢ represents a small quantity. Inserting this into the formula for the final
probabilities we get multiplicity distributions which fit the experimental ones quite
well [9].
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