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SIMPLE APPLICATIONS
OF STATIONARY PATH INTEGRALS

VILIAM PAZMA * Bratislava

The practical use of the formalism presented previously is demonstrated by two simple
one-dimensiona! examples (the square potential well and the WKB solution). The wave
functions and energies of bound states are obtained in a very simple way mainly in the
case of the WKB approximation.

MPOCTLIE MPMMEHEHHA CTALIMOHAPHBIX MHTETPAJIOB 1O TPAEKTOPUAM

[TpakTnyeckoe UCTOLICBaHUE (HOPMANH3IMA, BBEIEHHOTO paHbilie, NPOAEMOHCTPH-
POBAHO Ha JBYX ONHOMEPHBIX ApUMEpAX (NOTEHUMANbHAA AMA U KBA31KACCUUECKOE
pelenue). Bonuossle QyHKUMM M IHEPTUH OCHOBHBIX COCTORAHUIA NONYYAIOTCA OYEHD
npocto npexpe Beero B cnyvae BKB - npubnnxenus.

1. INTRODUCTION AND METHOD

Firstly we shall briefly outline the stationary path integrals formalism. In [1] we
showed that the solution of the equation

Tﬁ + E_& Eiuo 3

can be written in the following form
Y(x)= S A()k|x, a) ¥+ D Aslklx, bYWy (2)

where x € {a, b) and A(s|k|x, a) is the amplitude of the trajectory s connecting
the points a and x (it can be interpreted as the transition probability amplitude of
the particle from a to x). The summation in Eq. (2) must be performed over all
trajectories which connect the points in question and do not leave the interval
(a,b) . ¥ and W, are constant.

* Ustav fyziky PFUK. Mlynské dolina. CS-816 31 BRATISLAVA.
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If we replace k(x) by
k(x)=k(a+ne) for xe(a+ne, a+(n+1)e) (3)
n=0,1,...(N=1); e=(b—a)/IN
then the amplitude of the qE.onJ\ s has this form
A(slk|x, a)=a(s|k) exp [i [, k.(x") d] 4)

where d/ is the element of length and the integral in the exponent is calculated

along 5. We note that in this case we consider only such trajectories the turning .

uo:ﬁ of which are only the points x, = a + n¢ (the turning point of s is such a point
at which the particle changes the direction of its motion). The number a(s|k,) is
constructed in the following way: o

1) we assign to the turning point x, = 2 + ne the number

L k() = k(x,)
T k() + k(x)”

ii) we assign to the transition of the trajectory s through the point x, =g + ne the
number

1 H»Cp;_vl k(x,)
k(x,_ )+ k(x,)’

irﬁn. the sign + (—) is taken at the time when the particle comes to x, from the
left ?_.m::. Then a(s|4,) is equal to the product of all such numbers which must be
taken into account for a given trajectory. )

In the limit £ — 0 the amplitude of the trajectory, which has no turning point and
connects the points 2 and x or b and x, is equal to

A(silklx, a)= z.\mlwlw exp T %.\AE QL )
or )
A(solklx, b)= /.\MIMNIW exp T ‘\\.\«C\v QL . (5"

The sum of all amplitudes, each of which has one turning point x, € (x, b) and
connects the points @ and «x, is equal to

S At o= o 0] () e £

X exp T.. h_»c\v QL ; (6)
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Likewise

X exp T % k(y) ﬂi (k'(x)=dk(x)/dx) (7)

is the sum of all amplitudes each of which has one turning point x, € (a, x).
These results allow us to determine the amplitude of any trajectory. In what
follows this formalism will be applied to two simple examples.

II. BOUND STATES

Let us now consider particles which are scattered by the potential

V, = const x<0
Vx)=4{0 Osx<b . (8)
o o x>b

and let the particle before the scattering be described by the amplitude §=+ "(x)=

=exp [ix VE +i0 — V,] The solution of Eq. (1) for our case and for x € {0, b ) be
equal to :

w(x)=3 AGlklr, 0) V(@) (@<0). )

The nonzero amplitudes are only those the turning points of which are only the

points x =0 and x = b. In accordance with the formalism we assign i) to the turning

point x = b the number R, = —1 and to x =0 the number R,=(k — k.)/(k + k)
(the particle comes to x =0 from the right) ii) to the transition of the trajectory

through the point x =0 the number

A vey

if the particle comes to x=0 from the left (right) where k,=(E +i0)'” and
k=(E+i0—V,)'". -~
Then

2k
k+ kg

2k
k+ky

R Ol e (10)

4 0;..;1:%: eikut et 4



+ et R et R @ikt |n\~|>||
o h \A + »_-

e M+ E .

The first term in the square bracket is the amplitude of the trajectory which has no
turning point (¢ — 0— x), the second term corresponds to the trajectory which has
one turning point x=5 (a—0—b—x), the third term corresponds to the
trajectory (e —>0—-b—0-1x), ...

The series in Eq. (10) can easily be summed. The result is

N» Q;:k — ﬂu;:? @It«:h
AS»+»:~+FW»G§3. (11)
kot k

Yi)y=w¥."

- The right-hand side of Eq. (10) as the function of E is singular at the points which
satisfy the equation

_k—k,

_a»is

et (12)
It is well known that these singularities are poles and their positions on the real
E-axis determine the energy spectrum of the bound states. The bound state wave
function is proportional to the residuum of ¥(x) at the corresponding pole.
Let us now consider the limit V,— . It follows from Eq. (10) (we do not write
an unimportant factor) that

W(x)~ W (0) sin ko(x = b) _ P (0) sin ko(x — b)
: " sin kqb o »@_Ja_l»gg
, " " n’n’!

and on the basis of the foregoing we immediately obtain the solution of our
problem.

Ill. ONE-DIMENSIONAL WKB SOLUTION

We assume that

i) the equation £= V(x) has at most two roots x, and x,>ux, (V'(x,)<0,
V'(x.)>0),

ii) the potential V(x) is such that only amplitudes of such trajectories the turning
points of which are only the points x, and x. contribute to the total amplitude.

The sum of amplitudes, one turning point of which is situated in the small vicinity
£ of the point x,, contains the factor (the particle comes to x, from the left)

1 k'(x) . _
5 E.:_a»\ k(%) exp T_ﬁ»c\v n_Ll (13)
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J »\3 g% _Imq.‘.<
Hll a mxm_»gv&. mxcu_::e
2 £2(x3) X \AA.».V P ¥ 4 v

where P denotes the principle part. Eq. (13) will become clearer if we realize that

3. ’ Y = Y — .
we can write V(x)=E + V'(x:)(x — x.) for x € 2(x.) and k(x) = <.m +1i0 - V(x).
Likewise for the point x, (the particle comes to x, from the right)

1 k'(x) ﬁ . % , _
= d exp |2i ] k(y)dyl= (14)
2 Jau * k(x) 4 x +
P k'(x) ﬁ . _ R 55 & e
== d exp{2i | k(y)dy exp|2i ] k(y¥)dy|.
2 \ Tk TP +
It follows from (13—14) that we have to assign to the classical turning vi.:? the
number R = — izr/4. Then we obtain for the scattering amplitude the expression
k(a) ﬂ % ) _ <
=y : k(y)dytx 15) .
n\\A\«v - ﬁ: AQV / \AA.—.V Ox_u ! 4 A.<v .«._ A

exp T % k(y) QL + R exp Tm h”»@v QL exp ﬁlm 5_ k(v) a.;

1-Rexp Tm % k(y) QL

Eel

X

fora<x,<x<ux,

W= @\ B exp [i [k ay (16)

exp [i | #0») ay|ewo |- [ 1hwyav]

X . -
1— R exp Tm g. k(y) QL
for x=x,. . .
In what follows we put R = —i. Then we obtain for the energies of the bound
states the equation
‘—u —
% \,‘QvaanA:.va (17
where n=0, 1. 2, ... and for the wave functions the following expressions
2C, . * T ,
P ar, = ——==sin : k.(y) 3<+; (18)
T V() 4
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| uﬁl.,\_!\w_%w% ﬁ; 1k, 0| (19)

where k.(x)=E, — V(x) (E, is the solution of Eq. (17)) and we formally put C, to
be proportional to “the residuum at the pole E=E,” (it is not evident if the
singularities in question are the poles in the case of the approximate amplitude

(15—16)) of the function ¥ (a) Vk(a)e™* expli firk(y)dy] x (1+exp [2i
wk(y)ydyDt

IV. CONCLUSION

In the foregoing sections we tried to outline how to solve some quantum
mechanical examples by means of thé stationary path integral formalism. The aim
of this paper is to make clear the possibility of the practical use of the formalism.

In [1] we showed the equivalency (in the sense mentioned there) between the
stationary path integrals and the integral representation of the Schrodinger

equation presented by Baird [2] and therefore further applications can be found in
{2]. too.
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