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PATH INTEGRALS AND THE KLEIN—GORDON
EQUATION (1)

~ VILIAM PAZMA*, Bratislava

We present the new path integrals representation of solutions of the Klein-Gordon
.GA.O.V equation. The path integrals in our formalism are the natural generalization (to
the relativistic case) of those used by Feynman [1—2] in his formulation of nonrelativistic
quantum mechanics. - -

HHTEIPAJIbI TIO TPAEKTOPHAM H YIIPABJIEHHE
KIEAHA-TOPIOHA 1.

B paboTe paccMaTpMBaeTCd HOBOE MpENCTARICHHE RIS pelleHHi ypasHenus Kineii-
Ha-TopaoHa MOMOIbIO HHTETPANOB 10 TpacKTopuaM. B nannoM dopmanusme HHTErpa-
bl MO TPAaEeKTOPHAM TNPENCTABISIOT cO0O#M ecTecTBeHHoe o06o6meHne (Ha pe-
JIATHBMCTCKME CNy4ail) MHTErPaJIOB MO TPACKTOPHAM KOTOpble Hcrionb3osan PeitmaH
[1, 2] B cBoei -hopMyNTHPOBKE HEPENATHBUCTCKOR KBAHTOBOH MEXaHHMKH.

I. INTRODUCTION

The formulation of nonrelativistic quantum mechanics in terms of path integrals
[1—2] gives in a compact form the expressions for propagators or solutions of the
nonrelativistic Schrodinger equation. This formulation does not contain the
noncommutative mathematical objects (if we consider spinless particles only), does
not require to know the Hamiltonian of the system and its conceptual framework is
very near to that of classical mechanics. All this allows an elegant and relatively
transparent interpretation of mathematical expressions.

The causal propagator of the K.G. equation can be expressed by means of path
integrals, too [3]. The corresponding expression is elegant from the mathematical
point of view but its interpretation is not as transparent as in the nonrelativistic
case. This is apparently caused by the fact that the K.G. equation contains the
partial time derivative of the second order. The particle described by the K.G.
equation has further in addition to the nonrelativistic degrees of freedom also the
degree of freedom connected with the existence of particles and antiparticles. From
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that there follows that if we want to find such a representation of the K.G. equation
in terms of the path integrals which is in a simple relation with nonrelativistic path
integrals, we have to divide (if possible) the solutions of the K.G. equation into two
classes. One class: of solutions corresponds to particles and other solutions are
connected ‘with antiparticles. The investigation of the time development of the
solutions corresponding to particles or antiparticles would lead, at least in some
special case, to a hew path integrals formulation of the K.G. equation. The
realization of this briefly sketched program in the case of the motion of the particle
in a static magnetic field is the aim of this paper.

1. THE SPINLESS PARTICLE IN A STATIC MAGNETIC FIELD

The amplitude describing spinless particles in the static magnetic field satisfies
the equation (we put ¢ = 1)

li43.F W(x, ) =[M; + (it 5, + eA(x) Y] W(x, 1). v 1)

The arbitrary solution of Eq. (1) can be written in the following form

v iEr . iEr
Y(x, 0= A(E)e % P=(x)+ Y A(E)e” 7 . (x), (2

E>0 E<Q

where @c(x) are the solutions of the equation
E*@e(x) =[M; + (i% 3, + eA(x) )] @e(x). (3)

In what follows we shall use this designation

iEr
. YO 0=3 A(E)e™ ¥ @u(x) 4)
E=0
and interpret ¥ as the wave function describing particles and ¥~ ag the
amplitude connected with antiparticles [4]. It is evident that if

YOx, 6) = ¥ (x, f,+ 1) =0,

then for arbitrary re(s,, 4L+ 1) we have @t “(x, £)=0. From that it follows that in
this case Y™ and wo develop (time development) independently each of
another. Let us now investigate the time development of ¥, There holds
iBr i,
YOUx, f+7) = >SA(E)e # e n @e(x) =

E>Q

(5)
iE1,

i dE E?
=3 A(E) \ DVim(E) e 12 ("0 ) 2 Pe(x),

E>0

where

i dE E?

‘ mﬂ.
o [TdV o\ mE)
=lim ] dVim(E). NL @v.
e—0n=tJo A.\Nl
i€
e=1/N (N is integer) and &, =ne An._. sD.
Using Eq. (3) we can rewrite (5) in the form

i, dE M?
— = i (m®
Tx, f,+ avu_@/\imvo Pl NA +s@V,x

m ; (6)
! i, m%mln;rmocv
i % OI\PN_.:nr N\!AmV €+Vﬂxn ch
where P= —i#3, and & is the ordering index [1]. Using the equality
i o (B —eAs ) g _
nsw?aurlﬂ!w::% _ \_.@—Amvo 0 AEEN P, — eA, () "
(7)
i, (E)v(5)
e ,
where S s
em(&.)
and rules of disentangling the operators f1], we obtain |
WO, o+ 1) = [ ra [BVIE) [B0(E) Sx—x0- | dEu(E)) x N
s 2 1 M
» o»:isw +2>?+§3€TMA=TMV_ P, 1),
Likewise for ¥ we obtain
YIUx, ,—1)= %Qd&%@(ﬁg‘@cm?l Xo— b d&v) x
\ 9
m Seu Mn& VIMA Iﬁv_u |v
XOM...M-QM—“ 2 INe>ANo+_,c nv 2 T ﬁ Aﬂcu &v.
The expressions (8—9) can be interpreted as follows: Let us put in (8)
dq(8)_ .
t=4+§, c@ua|mu._@
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and consi istori :
nsider the histories () =q,(4+ &) which connect the space-time points

(x%0=q.(%), 4) and (x= X
amplitude *=9.(a+7), 4+2). We assign to the history q,(r) the

ey em@nam), (10)

where

~

)

L=="F—egA lmA My
2 qA(q) 2 §+5

moving in the vy e nnmma.oa wm the relativistic Lagrange function of the particle
I¢ magnetic field. On the basis of the previous the expression

.F/\M\.@ﬁ?uru % eeawﬁ,isﬂféaa-wAi%: (12)
g ’

r2
+ VA, + fidnu) IW? +R:

m®
2 m

T _ o
Fz\s ?&Qnyn \ dEv) x o]
u A (13)
is interpreted as the sum of ampli i i
; plitudes of all possible histories connecti i
. - . H
two points m.:a running in the time decreasing direction. If we put 18 the given

then the expression (13) can be i
. ; Interpreted as the transiti ili i
of the particle with the charge (- ¢) from x, —1) to .NM uchmc_:Q ampltude

Th . .

o M_ MM_,MMWE between :x.w amplitudes ( 12—13) and Feynman’s expression for the

s ic vaonmmmﬂo.n 1S very simple. To obtain the nonrelativistic amplitude it
Dt to omit the integration over m(¢) and to put m(t)y=M,

HI. CLASSICAL LIMIT

Let us now consider the f imi
. : ormal limit #— 0. In thi G
1at history for which the functional AR e el 2 small icidiy of

4

2

is extremal contributes to the total transition probability amplitude. As every
history is given by means of two functions (q(¢), m(z)) we have to vary not only
q(?) but m(r), too if we want to find the extremal history. We obtain from

(6L/6m)=0

[-[ofrmo Yo t)] o

. . SSM%

and from (SL/dq)=0

d, .. .
3; (m4) = eq rotA(q).

From that it follows that
.2
_me _ LA Rv
L= 2 +&A—>Aa—u Nv Nﬁﬁﬁ' Nv 2 m+ m
can be regarded as the Lagrance function of the particle interacting with the
electromagnetic field. This form of L and the variation principle mentioned above

were first formulated by Petrd§ (unpublished). ’

IV. THE SOLUTION OF THE K.G. EQUATION
IN TERMS OF PATH INTEGRALS

Let the boundary conditions of the K.G. equation be given in such a way
P(x, 0) = Py(x) Pix, 1) = ¥.(x). (15)
The results of Sect. II. allow us to write for ¥(x, #)re(0,7) the following

expression

W(x, )= % &% 3 AGIAl (%, 0, (6, 0)) () +
, (16)

+ \ xS AGIAL K, 1), (%, 1)) PO,

where
2 AGIAl(K, 0, (%, 0))

represents the sum of amplitudes of all possible histories connecting the points in
question. The second term on the right-hand side of Eq. (16) contains the sum of
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amplitudes of all histories connecting the points (x,, ) and (X0, 0) and running in
the time decreasing direction,
The functions ¥" and @ are given by these equations

+) — — =) = -
YiP(x) = ¥(x, 0) — @~ (x, 0)= W(x) (17)

- \ d’x, ) A(s]A (x, 0), (x:, 7)) ¥(x,)

PO(X) = W(x, 1) — p (x, su, Y.(x)— (8

- [P0 S AGIal G 0, 3, 0)) ¥0).

Eqgs. (16—18) can be regarded as the new path integrals representation of Eq.
(D).

V. CONCLUSION

The above presented path integrals formalism for the special case of the K.G.
equation seems to be VEry transparent and exhibits, we believe, the closest
continuity with the Feynman path integrals in the nonrelativistic case. Although the
nonstandard formulation of the extremal action principle, following from the
presented formalism in a natural way, is not relativistically covariant, yet the
classical equations of motion are relativistically covariant. The same can be
affirmed about the final results of the presented formalism.

. REFERENCES

[1] Feynman R. P, Phys. Rev. 84 (1951), 108.

[2] FeynmanR. P,Hibbs A.R,, Quantum gm&ﬂi& and Path Integrals. Mc-Graw Hill, New York
1965. ,

[3] Feynman R. P., Phys. Rev. 80 (1950), 440.

[4] Sweber s. S., An Introduction to Relativistic Quantum Field Theory. New York 1961.

[5] Gradste yn 1. S., Ryzhik L W., Table of Integrals, Series and Products. Academic Press, New
York-London 1965. : '

Received March 24™, 1976




