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STATIONARY PATH INTEGRALS FORMALISM
FOR THE ONE-DIMENSIONAL TIME-INDEPENDENT
" SCHRODINGER EQUATION

VILIAM PAZMA®*, Bratislava

We present the so-called stationary path integrals formalism for the one-dimensional
time-independent Schrodinger equation. The conceptual framework of our formalism is
almost the same as the one used by Feynman [1—2] in his formulation of quantum
mechanics. The connection between the solution of the time-indepeéndent
one-dimensional Schrodinger equation and boundary conditions (the values of the wave
function are given at two different points) is given in a simple way by means of the
so-called transition probability amplitudes of particles along trajectories.

@®OPMAJINM3M CTAIMOHAPHBIX HHTETPAJIOB no .—.—».'HN.—.Q—-E
A OMHOMEPHOTO YPABHEHHA HIPENVHTEPA,
HE 3ABHCAIErQo OT BPEMEHH

- B craThe paccMaTpHBaeTcsl (JOPMANN3M TaK HA3LIBAEMBIX CTAIHOHAPHBIX HHTErpanos
110 TPacKTOpHAM JUIs OFHOMepHOro ypasucHua Illpeurrepa, He 3aBUCHINETO OT Bpe-
meHn. Cxema [aHHOTO chopManu3Ma aHANOTHIHA CXEME dopManmimMa, KOTODBIH
ucnons3opan Peinman [1,2] B cBoeli dopmynHpoBke xBaHTOBO# MexaHuku. Ilpm-
BORMTCH IpOCTaA CBA3b MEXY PpEIICHHEM O/[HOMCPHOTO 'ypapsesmsi- llpenunrepa,
HE 33BHCHIIETO OT BPEMEHM, M IPAHHTHBIMH YCIHOBHAMH (3uavennn BonHOBOK yHK-
UMM faloTci B ABYX PasHBIX TOYKax) npH DOMOIEM TAK Ha3bIBACMOH AMILTMTYALI
BEPOSTHOCTH MEPEXOfia YACTHIbI BIOTL TpPaeKTOpHil.

1. MOTIVATION

In order to have a transparent picture of the problem (and we shall need in some
sense this transparency below) we shall start with the following simple example. Let
particles, having the energy E> Vo=const, come from the left to the potential
barrier i

V(x) = VoO(x ~ %)

(e(x) =1 if x>0 and ©(x)=0 if x<0) and let incident particles be described by
the amplitude

* Ustav fyziky PFUK, Mlynska dolina, 816 31 BRATISLAVA, Czechoslovakia.
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i (x) =exp (ikox),

where k,= + VE and we put #%/2m = 1. Th . o .
satisfies the equation . The amplitude, describing this scattering,

QN
|4~ %o —x)| ww=0. (1)
The solution of Eq. (1), corresponding to our case, is

— pikyx—a + ik (xy~a _ i
Y(x)=¢ P (g) + e Tl TR ¥ (a),

Py @)

for asx<x, and

W(x) = e 2 s o )

Tt K )

for x=x, (k= +VE-V,).

, The mMooza term in AN.V is interpreted as the amplitude describing particles which
ere reflected at the point x, (changed the sign of their momentum) back into the

region x <x, and (3) represents the ampli ibi i
. plitude describin i
trated into the region x> x,. F e i R

Let us now consider the potentials of this type
V(x)=V,O(x —x)+ V,O(x—x)+...+ VNO(x—xy). - 4)

WMMQMMM“M”MHMMM MMMMM_WWM“W ﬂ._ﬁn:oxvn.mmmmo:m (2—3) occurs any time when the
. . of the points x,, x;, ..., xn. A i ibi
particles which passed around a given point of a &m_oczmume oﬁﬂ_nz__uﬂoﬂwmmwﬂwsm
3<o~mmm the direction of their momentum at this point can be calculated b Eo,m”“
of the simple rules following from (2—3). In this way, we can, at least in w:& 1
solve the n:.quB of the scattering of particles on the noﬁonnmmm of the t M 4) mZo,
note Em.ﬁ this procedure can be used only in the case when E is not mnﬂw_ to S\«w
W”owﬂws_wmmmw_ Am,_ m Xoor) . <<o:m=m= no.BEnE on the removing of this difficulty
> - Because “a most every”’ potential can be regarded as a limit of a sequence
noﬂm::m._m of type (4), the procedure outlined above indicates the possibility of
an interesting method of finding solutions of some quanturn mechanical Eoc_ozmm

II. THE TRANSITION PROBABILITY AMPLITUDE
OF A PARTICLE FROM THE POINT x=0 INTO THE
POINT x=a ALONG THE TRAJECTORY s

. %uom the sake of m::n:n:«, let us choose the uniform partition of the coordinate
xis x and replace the function k(x) = + (E — V(x))"* by an approximate function

114

k.(x)= k(ng) for xel{ne,(n+1)e)

. n=0,x1,+2,...

&)

We assume that V(x) is continuous and V(x)<E. The more general case will be
considered later on (the end of Sec. IV.).

Let us now consider continuous trajectories connecting the points x =0 and
x = a. Let the point x, be situated on the trajectory s. We shall say that the point x,
is a turning point of s if the particle which moves along s from x=0 to x=a
approaches x, from the left (right) and leaves x, in the direction to the left (right).
If x, is not a turning point of s, then we shall say that the particle (or the trajectory)
passes through x, or x, is one of the points x =0 and x=a.

In what follows we shall consider only such trajectories the turning points of
which are only the points x, = ne, where n is an integer. In this case we assign to
the trajectory s the amplitude ’

A(s|k] a, 0) = a(s|k) exp (if. dlk.(x)), (©)

where d/ is an element of the length s and f.d/ means an integral along s. The.
number a(s|k.) is constructed in the following way: )

i) We assign to the turning point x.€s the number (k(x,_0) — k(x))
{(k(xy-1)+ k(x.)) if the particle comes to x, from the left or the number (k(x.)—
— k(x, ) (k(x) + k(x.-1)) if the particle comes to x, from the right ;

ii) We assign to the transition of the particle (or the trajectory) through the
point x, = ne (n is an integer) the number 2k(x,_)/(k(x,) + k(x._,)) if the particle
comes to x, from the left or the number 2k(x,)/(k(x,) + k(x.-1)) if the particle
comes to x, from the right;
then a(s|ke) is equal to the product of all such numbers which must be taken into
account for the trajectory s. If s has no turning point and does not pass through any

. =ne, then a(s|k.)=1.

One can see (taking into account (2—3)) that A(s|k.la,0) can indeed be
interpreted as the transition probability amplitude of the particle from x=0 to
.x=a along s. In what follows (6) will be simply called the amplitude of the
trajectory s.

IIl. THE SOLUTION OF THE SCHRODINGER EQUATION
IN TERMS OF THE AMPLITUDES OF TRAJECTORIES

Let us seek the solution of the equation

| £+ ke | @0r=0 o

dx?

on the interval {0, @) with the boundary conditions
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Q~AOV” -N\: QN,A&V” ~N\= = Amv
Itis evident that for any xe (0, a) the solution of Eq. (7) can be written in the form
P ()= @."(x) + @7 (x), %)

E:QmGmiﬁkvAGML?\:SES@:SE@ wEn:anammnlcm:mnmn:o_omEoi:m?oa
the left (right) to the right (left). - :

On the basis of the previous result we can write @.(x) in the following form

@-(X)=D A(slk.|x, 0) ¥ + M\»Q_F_&, a) v, (10)

where ¥"'=@.”(0), ¥ =@ (a), = means the summation over all possible

trajectories which connect the points 0 and x or a and x, do not come out of the
interval (0, 2a) and have the turning points only at x, =ne (n=1,2,... ., N—1 if
a = Ng).

Equation (10) will be more transparent if we realize that for ¥ to contribute to
@.(x) it is necessary that particles which start from x =g in the positive direction of
the axis x reflect somewhere to the right and then pass through the point x =a.
However, this effect is already included in ¥%. And that is why %57 does not

occur in (10), too. From this it follows that for o~ and ¥ we have to write the
following equations

V=Y AGlkI0,0) ¥+ T A(s|k| 0, ) W, an

=3 A(s|k.]a, 0) O+ > A(slk| a, a) .»&.;w. (12)

Egs. (11, 12) together with equations which we obtain from (9) by substituting into
(9) successively x=0 and x =a allow us to calculate ) and P,
Having realized that

lim > A(s|k|x,0)=1 +M>c_£o. 0)

x—0" 5 s

lim Y A(s|k.|x, a)=1+S A(s|k.] a, a),

it is not difficult to show that @.(x) given by (10) fulfils the desired boundary
conditions and if we take into account that the continuity conditions for ¢, (x) and
its derivative are satisfied in the way by which we assigned A(s|k.|...) to the
trajectory s, then (10) is indeed the desired solution of our problem (of course, if
the solutions of Egs. (11, 12) and equations obtained from (9) exist).
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IV. FORMAL LIMIT £—0

. - . S
Leaving aside the problems connected with the limit e—0 _2A =w .:o%umsg\”“mw_n
i i e
is limi t of view. We assume that k(x) is diffe
this limit only from the formal poin : : e
i i t us now consider the trajectory s,,
on intervals considered below. Le : 28 1o
turning points and which connects the points X, and x > x,. In Sec. I1. we assig|

to s, the amplitude

\»Ah._\ﬂ_ X, B.vﬂza hAh.__\Amvnm.ﬁ._»Qvaw ’ Aﬂuv

£—=0

where

N\ﬁﬁk:l_v — A Ikﬁk:vlkﬁ-ﬁai_vv
atlkd =TTy s kG~ I kG ¥ £ G ) |
(n is an.integer and runs over the corresponding set of indices). For a sufficiently

small £ we can write
- k' (x.)
n?._»buﬁ;_ - Nﬁbvmv.

Then
1
lim hﬁhc_\ﬂmv =e ?

£}

g Wa, k() (4

k(y) = k(x)’

where k'(y)=dk(y)/dy and

k(x) if: k(»)d
\»Ahc_k—\ﬁoh.v“ /\ \ﬂﬁ\ﬁ-v 0__.1. (y)dy .

Let us further consider the sum of miv_zcao.m of trajectories o.mnr of M.M_M.er.m
only one turning point. Let 30 trajectories again 8::02. the voiaﬁ knc< g S.
and the corresponding turning points are m:.cm:na in the inte 2
(xo<x<a<b). The sum of all such amplitudes is

(15)

. AimVme
M\»?_ia, B.VM_E._.M,_U}?._F:, %I\ 72) k()

X \»A.nc_\am_ X Xo)-

If we take into account that

if5k(y)d
\»Ah:_k_k,kav}ac_ik:,annwa e,
then
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M\»AH__\A_.NJ .N:v” MM”.WOQH._»QE% X

b ’
X AIWV% dx, EGN;H_»QK%.

k(x) (16)

We ovSm.: Enoﬁmo.mg the sum of amplitudes.of trajectories each of which has only
one turning point in (¢, d) (c<d<x,<x)

DAk x, x,)= K(x0) i knay o
) \ﬁA\ﬂv

These results allow us to write i
. € 1n a compact form the sum of amplitude i
to the given class of trajectories. P ORI
As an illustration we present the following example. Let incident particles cm,

scattered by the potential V(x) (V(x)—0 if |x|— =)
. . and let these i
. described before their scattering by the amplitude particles be

¥ (x) —— exp (ix VE).

X—r—=

For the NBE_.E% describing this scattering we write

Y(x)= lim ¥(a) Enﬁ»g& T IW.‘sa‘«_ »Ak_vomn_»g& _

by k(x) )

IW a \A-Ah_vv 8 ksﬁ u
L.. 45 ) A dx, \Amvv X (18)

X e 2if2k(y)dy +w%s k(%) gips
8). dx, %(x) e2ifek(y)dy x

m»,?vg.ii.
x e 2l
.ﬁ 9«_ x) b em %(x) ¢ 2ifzk(y)dy +g
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The third term in the squared bracket muliiplied by the term standing in front of
the bracket corresponds to the sum of amplitudes of all possible trajectories which
connect the points in question, do not come out of the interval {a, ©) and have two
turning points x, and x,>x,. The other terms in (18) have a similar meaning.

It is evident that, in general, the integrals in (18)are not unambiguously defined.
It is necessary to give rules how to integrate over the interval containing the
classical turning points (E = V(x)). The natural demand how to specify these rules
is the requirement of the correct asymptotic behaviour of ¥(x). The correct
asymptotic behaviour is obtained by the replacement of E— E +i0.

V. CONCLUSION

In [1] Feynman introduced the notion of the transition probability amplitude
of a particle from a (space-time) point (xs, &) to a point (x,, #,) along the trajectory
AEwHoJ& x.(1), where x,(&) =x, and x.(6): =x,. The corresponding nonrelativistic
amplitude of the spinless particle is according to [1] equal to

ﬁ.nA_n._.&h@k:.-.s,:. Q@v

where L is the Lagrange function of the considered particle and the constant C
does not depend on the form (geometry) and character (time-develompment) of
x.(£). The total transition probability amplitude of the particle from (x4, %) to (x,,
1,) is equal to the sum of amplitudes of all possible trajectories connecting to points
in question. For mathematical details the reader is referred to [1, 2].

If the wave function is defined in such a way that

Vx,, 4)= % dx,CY, e ifidl  W(x,, 1), (20)

then one can show [1, 2] that this formulation of quantum mechanics is equivalent
to the Schrodinger formulation. From this point of view Eq. (10) can be considered
as an analogon of Eq. (20). Eq. (10) directly connects (in the spirit of the path
integrals formalism mentioned above) boundary conditions with the solution of eq.
(7). The interpretation of mathematical expressions in (10) is as simple and
transparent as in the case of Eq. (20).

In [3] Baird presented an interesting integral formulation of the
one-dimensional time independent Schrédinger equation. He sought the solution
(on the interval {(a, b)) in the form

1
Vk(x)

eilsk(dy % (x) + e~ k)dy 5 (x) 21

1
P(x)=——
(x) %)
and he derived for #®(x) the following integral equations
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)= AC+ \ dx, M»Mww@swﬁ_::& x?.?v. 22)
b ’
K(x)=AC — * dx, N»»W_W%ﬁ_::& Xz, (23)

where A are constants. ,

If we solve these equations by an iterative method (the zero approximations are
%:(x) = A™), then the individual terms of the expansion have, at first sight, the
same mathematical structure as the amplitudes of trajectories connecting the points
a and x or b and x. Naturally there arises the question whether our formalism is
equivalent to Egs. (21—23). The equivalency (in the sense mentioned above) can
be proved for example by the mathematical induction method (we put A®=

" Vk(a) ¥ and AC= Vk(b) ¥ exp(if?k(y)dy)). The proof is simply but
somewhat lenghty and we shall therefore not present it here.

Although the stationary path integral formalism does not increase the number of
exactly soluable problems in quantum mechanics yet it forms a basis for an
unconventional approach to some simple problem and perhaps its further develop-
ment can lead to some effective approximation method. The generalization of the
formalism presented above for a three dimensional case is not, it seems to us, trivial
but it turns out that it can be used for the radial Schrodinger equation.

* We -wish to thank Dr. Petras for stimulating and valuable discussions.
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