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A QUANTUM SPIN MODEL WITH UNSTABLE
STATIONARY STATES

PAVEL BONA*, Bratislava

An exactly solvable model of a quantum lattice system with infinite many degrees of
freedom and with a finite range interaction is constructed. There are stationary states of
the system without being convex combinations of KMS and ground states. It is shown
that all local perturbations of such a state lead for large times 7= to states
macroscopically different. from the initial ones.

O===O=>= KBAHTOBAS MOIEJb C HECTABWIbHbIMH
CTAIIMOHAPHBIMHM COCTOAHUAMH

TTocTpoeHa TOYHO pelaeMas MOACb KBAHTOBOA peléTHaToN cUCTEMBbI € GECKOHE -
HbIM UKCIOM CTEMeHe# CBOGOMbl ¥ C KOHEUHBIM paguycom B3aumopeicTsus. Cyuect-
BYIOT CTALIHOHAPHBIE COCTOSHUS CHCTEMBI G€3 TOTO, YTOOb! OHH SBAKNUCH BLIMYKIbLIMU
komGunaumsmMu KMC # ocHOBHbIX cocTosmuit. TToka3ano, 4To ans GOnbUMX BpEMEH
(t—> ) BCE AOKaNbHbIE BO3MYHICHMS! TAKOTO COCTOSHHA NPMBOAST K COCTORHHIAM,
MaKpOCKOMHYECKH OTAHYAIOUIMMCS OT MEePBOHAYANbHDIX.

I. INTRODUCTION

Metastable phenomena occurring in macroscopic system (e.g. overheated liquid
in a bubble chamber) are not well understood from the point of view of dynamical
laws of quantum mechanics. The number of microscopic degrees of freedom of
systems exhibiting some kind of metastability (or irreversibility) is very large.
Rigorous mathematical analysis of the behaviour of “realistic” systems consisting
of many microscopic constituents is a difficult problem. A simple solvable model is
constructed in this paper to demonstrate a “theoretical possibility” of dynamical
description of systems with metastable states in the framework of quantum
mechanics of big systems. It is a model of an infinite chain of 1/2-spins with a finite
range translationally invariant interactions.

The language of a quasilocal C*-algebra % describing the system as the algebra
of all its observables is used. A=%, is the norm closure of an algebra A, of local
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n.:wzmzom“ A, =Ny, where 9, are algebras describing finite subsystems of the

system. The algebras 91

dimensional Hilbert space. Hence, the C*-inductive limit 9 of the net of algebras
A is simple. The convex set of states F(A) < A* is the set of all positive normalized
linear functionals on o and 9* is the dual of the Banach space . For we¥(MN),
x€, and w(x*x)=1, the state 0., o (y)=w(x*yx) for yel, is called a Jocal
perturbation of the state w. The time evolution of the system is described by

a strongly continuous one-parameter group of *-automorphisms-z,eaut Y and the
time evolution of the initial state o is given by

rto(r)=w'(x)= w(1x), xeA, weP(N).
A stationary state w fulfils *w = for all teR.
We are interested in the behaviour of states Ttwi=w), for — o, where @’ is
a certain stationary state (called here the vacaum state) and w; (xe, ) are its local
perturbations. The state @° is a stationary state, which is neither a ground state nor
a KMS-state and is extremal (pure) in #(A) (compare [3], where such states were
not known). The limits w* — limw;=w,e¥P(A) for some xeMN, exist and are

—

disjoint from w?. (All the states 0", w! and w! for all reR are pure and mutually

equivalent)'. The limits @, are not defined in F(N) for all xe, , since for some X,
and y the functions w.(y) are almost periodic in reR (in the strong sense).
Oscillations of the functions w;(y) are unimportant, as will be shown in Sec. IV,
from the point of view of macroscopic quantities of the system (hence, aiso from
- the thermodynamical point of view). The locally fluctuating states w; converge,
however, to partial states on certain smaller C*-algebras % <. The partial
description of the infinite system by such a subalgebra 9 < contains all the
information concerning global (macroscopic) quantities of the system (we need not
distinguish here between “observables at infinity” and :EmQOmnoEn,ocmm?mv_nm:,
compare [2]). The limits @, identified with the above mentioned partial states can
be classified by values of some macroscopic observables. It will be proved that the

initial perturbed vacuum state W) is macroscopically different from all the @

ex
(xe,, i+ ™). The stationary state w° is unstable, in the just mentioned sense,
ixrammuwo:o&__Onm_vnncng:o:m.

IL. BASIC PROPERTIES OF THE MODEL

The algebra of observables 9 is the C*-inductive limit of the net of Jocal algebras
U, where the indices X are arbitrary finite subsets of the set Z of all integers with
the partial ordering given by the set inclusion. 9, is the C*-algebra generated by

1/2-spin creation and annihilation operators a,,, a,, (meX) satisfying the commu-
tation relations

') For definitions of technical terms see, e.g. (3] and [1].
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x are, in our case, algebras of all linear operators in finite

i

la,,a.)=lai.a.)=0for k#m, a.,=0, )

an, + anan=1 (k,meZ)
and a, is the adjoint of a.,. .
Let the vacuum state be defined by )
0 eP(N): w'(ata)=0forall ke Z. (

ins ‘‘pointi ” i lattice
This state describes the spin n:.m:_ E:_.d m__mmcwswﬁ Umﬁ“ﬂ“w M_%_,”_\Mo MM w—“_mm_w tice
.mwm m:Hw%ﬂoB:o:, e _Hﬂmm_ﬂnwrwc:h.ﬂ_wﬂmm: Mwm _mmﬂnm is occupied (equivalently, m:n
p E?sm.sv.n _,.im mmu.\h ). The simplicity of 9 implies that the QZm-anomo:Smos
e fing T 5%6 nmm:n " is faithful. It is easily seen n.:mﬂ (2) defines
no:omu.osa_:m_w N ure state. Hence, the vacuum representation A._.n. the Qim._q.w-
::mac_m:.ocm <cw N_na ?03.90 vacuum state @") is also.irreducible. To simplily
Eomm.nﬁm:on o: .ﬂ identify the algebra % with the range of its vacuum qunmmos-
=oﬂ.m=oam iom“ m ﬂwm. the Hilbert space of this representation (called sometimes the
WMUWWMLMM mmmo_ﬁ Q'cF be the vacuum vector with the property

w"(x) = (2", xQ") for all xe. 3)
he vectors @ and Q' in &, linear
"} denotes the scalar product of ¢ 2 a ..
Hrwrmw ..MM“_.M% @erwc_o €. Clearly F=Q" due to the cyclicity of and the
—: : - -
irreducibility of the representation. Define

4
\NSNQMQEAQM.i+Q§+_v§§+nhu.+~. )

k-2
&)
:Q.»v“ M }3 -

m=j+1

. i i s trongl
The time evolution of our system is given In a usual manner [4]-as a s gly

continuous o——ﬂlﬁvN— ameter mn o:v T, m&.cﬂ mm Q@m—:ﬂa as H——Q str o:m —:—:ﬂ OH a wnnﬂo:ﬂﬂ
G*. —D HN— automor —g.—mﬂ: roups H‘A:-.
ﬁ m ﬁ ~.

£ = exp (itH, ) X €XP (~ iH,_r.0) n)

TX= norm-lim 7"x for xe¥, . (6)

n—w

. . ‘ B
Si b Q°=0 for all meZ, the state " is stationary and in the vacuu
ince h.2°= |
i ite
representation we can wri | |
n H\.H - 0::& OV:I Aomv

and HO' =0 (6b)

M M O
for certain selfadjoint operator H in &.
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Let 2, €% be defined for all finite XcZ by

Q= A 11 auv Q°. o) |

mex

The vectors . form an orthonormal basis in % (with Q'=@Q,.

the empty set). Let 9 be the linear space of all finite complex li
of vectors €, . %4 is norm-dense in &

initial domain % formally given by

# is the symbol for
near combinations
- Let H be a symmetric linear operator with the

H=3 h,. (8)

meZ

Since 4,2 =0for m¢ X, the operator H is well defined on 6 and it is not difficult
to see that % is H-invariant:

HScg. ©)

Each vector £, can be written in the form

2= (111 ai,..) 2°= 2,141, [m), (10)

j=1s=1{
where [k|=[k], = {k,, k..
[m]l=[m].={m, m,, ..., m}cZ, with 0<m<ki..—k for j=1,2, .., r—1,
and m,>0. Let G, =6 be the linear space spanned by all the vectors (10) with
-fixed [4], and let ¥, be the closure of 9y«1,- Then we have

@Hm@,@;_: 11)

&1,

where the direct sum of Hilbert spaces is taken over all “permitted”

specified above and over all nonnegative integers r. As a c
definitions we have

r-tuples [k] as
onsequence of

HR.([K], [m])= 3 Hoo, v, 2.([K], [m]), (12)

i=1

where k,.,= + . The operators H ..., occurring in (12) mutually commute.
Similarly we get

m@;_a n@_»_‘ - . AHNV
Let 4 (NeZ.u(+ «)) be the Hilbert space spanned by the vectors
’ B.=aia;...a,2" (14)

with m=1, 2, ..., N. Define a unitary mapping V([],) of %, onto the tensor
product
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-+ k.} is an r-tuple of integers with &,,,> k;+1 and’

®F, , where Ny=kio,—k,—1, . Ny=+o (15)
by the relation
V((k],) 2.((k), [m]) = B ®Br,® ... @B, » 2.3
where [m]={m,, m,,...,m}. With the notation
H,= _wu_ h.. _ (17)

we can write ,
V([k).,) Hu,.x.0 Q,([k], [m])=

=B ® - @By, @ (Huif) Ry ® .. @ B, (18)

and the action of H in 9% can be expressed by the actions of .mz in dense m:ﬁmﬁwmom
of F» (or equivalently, of ¥..). The actions of Hy in %, are given by the relations:
N ?

Hp=8 (19a)
HuB =Bt + Brnsrs m=2,3,...,N-1, (19b)
N.szz = mzl Awwnv
HpB.=0 for k>N. (19d)

The relations (19a, b) are valid also for N= +, in which case we can write H

instead of H... Now we are ready to prove . .
IL. 1. Proposition. The operator H defined by Amv. on .Sw &QEmE % is an
essentially selfadjoint operator, the closure of which is identical with the generator

. H of t, occurring in (6). o . .
Proof. A direct sum of bounded essentially selfadjoint operators is an essentially

selfadjoint operator. For NeZ,u(+ ) and

B= W B (Cn€C, K< + )

m=1

we have ?o:._ (19)

(| Bl <2118l (20a)

and (20a) combined with (12) and (18) implies
[|HR||<2r]|]| for all €%y, . (20b)

Relation (20b) together with (13) and (11) proves the ommoammm_ mn_?&wm::_omm of
H. To prove the convergence of (6n) for n— + = to the relation (6a) with. H from
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(8) it suffices to prove lim ||{exp (irtH) —exp (itH_,..,)] 2| =0 for all Q¢ and

n—+oo

this is a consequence of (20b), (13), (1
: ;. , (11) and of the fact th
strongly to H if restricted to the subspace %, , q.e.d. At e CoMzrges

EH%M ::Eﬁo.ma:m&oiﬂ. extension of H from (8) is denoted by the same symb _
- The explicit expression for the unitary group exp ( —izH) is derived in the :wmﬂ

section.
NL. THE GREEN FUNCTION

The matrix elements

(2, e, ) for all finite X, Yc Z 21)

determine the automorphism
group of :
and (18) we have p of our system. According to (12), (13), (16)

(2.([k), [m]), e7" 2., ('], [m'])) =

=68, Bu1ct(Br, » € Bn) mn—__Qwé ce N B ). ANNV
| 1 ;
Each matrix element (21) is of the form (22) and we have to calculate
Bn.eBYform,n=1,2, ..., N; NeZ,. 23)
and also the matrix elements
Bnr 7B mo.q all m, neZ,, (24)

M%“Mrnno_:.n_am with (23) for N= + . To get the explicit form of (23) we shall

Solve | OM MW@.%WEW un.oc_oa for Hy in the N-dimensional Hilbert space %, . The
v in F is given by (19a—). Writi i odi

‘o an e gl s o moaw ing the eigenvector Qm. noqmmvoa_:m

N

as H...Muu_ cn(E) B | (25)

we get the eigenvalue equation in the form
Ec,(E)=c(E) 26a)
Ec, (E)=Cn_(E)+ Cpi(E)form=2,3,.. ., N—1 (26b)

Ecy(E)=cn_((E).
Equations (26) give us the expressions
cn(E)=U,,_(EI2) c(E), (27)

wher - i i
e U.(z) are n-th order polynomials satisfying the recurrent relations

106

Unii(2)=22U.(2) - U.-(2), Ud2)=1, U (z)=2z. (28)

The unique solution of (28) is the sequence of the Tshebyshev polynomials of the
second kind:

0t -B ) =
Using (27) and (28), equation Aﬁwoov is written in the form

Un(E/2)=0, (30)
which si in fact the secular equation of the system (26). The expression (29) shows
that the solutions of (30) are

IH \..a ,u
E=E NSwAziv, \_,N,...,z. Gy

Substitution of (31) into (27) and normalization of the eigenfunctions @; = @, gives
Com = Cu(E) =[2/(N + 1)]"2sin [jma/(N + 1)]. (32)

Let us introduce the almost unmo&n functions of zeR by

L

HH,ANVHZ_+~WQ@M|R08 AZ\H Hﬁnomﬂ ~I<\|H|~v (33)

i=1

which are integral sums for the Bessel functions J,.(z) in their Sommerfeld integral
representation:

J.(D)= _mm e = cos (mu)du. (34)

0

Since ¢» = (Bn» @;), the results (31) and (32) lead to the following statement:
I11. 1. Proposition. The matrix elements (23) can be expressed in terms of (33)
by the formula : :
(B, e~ B,y = (=)™ TR2(20) = (=) Tn2n(20). (35)
Proof. We obtain Gm,v by mﬂnmmm,rqo:zma calculations using the completeness of

the orthonormal system {a;} in F~, q.d.
Expression for the matrix elements (24) might be obtained either by taking the

limit N-> + % in (35) or by another method without using the results for finite
subchains. The use of (35) gives the desired result immediately, since

lim J&(z)=J.(2) (36)

Neostoo

and the strong operator limit in ¥.
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BT WM, iH .
e Ll a7
Hence, we have proved

II. 2. Proposition. The matrix elements (24) are given by

(Brs €7 B) = (= )" "2 = (= )"* ") (20), (38)
where J,(z) are the Bessel functions.

The propositions IT1.1. and TII. 2. together with (22) give the explicit form of all
the matrix elements (21) and this expresses the Green function d
evolution in our model.

IIL. 3. Note. The formula (38) can be obtained directly from the known action of

H in &, given in (19). The relations (19a, b) with N= + ® lead to the recurrent
relations for the matrix elements (8., HB..) with the solution

escribing the time

k k

B., HB.)= \a+WI§ _ »IMIS . . (39)

Wv # 0 only for nonnegative integers x. The power
expansions of exp (itH) and (39) give (38).

III. 4. Proposition. The spectrum of H consists of a simple eigenvalue 0 and an
absolutely continuous part.

Proof. 1t suffices to prove that the measures myg on the real line R,
mg (dz)=(R, P, (dz) Q) (40)

are absolutely continuous (a.c.) with respect to the Lebesgue measure for all Q:
(2, 2°)=0, Qe%. In (40) P, denotes the spectral measure of H. The vectors Qin
F with m,, a.c. form an H-invariant closed subspace in & and we have to prove the
a.c. of mg for all the 2 = Q,(X+ ) only. The matrix element (21) with Y=Xis

a Fourier transform of such a measure. According to (22) and [5] (Proposition
IV. 1.) it suffices to prove that

The combinatorial numbers A

(Br > €"B,.) =0(¢7°) for t— » with 6> 1 (41)
for all m>0. According to (38) and the recurrent relations for the Bessel functions
Joel2) + I, i(2)=2p/2J,(2) (42)

we have
(B €™ B,) = 3 (= 1Y (2~ 1)y, (20). “3)

i=1

A finite linear combination of the Bessel functions behaves for large r as O(¢+™'7?)
and (43) implies (41) with §=3/2, qed.
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IV. INSTABILITY OF THE VACUUM

. 0
We are interested here in the time evolution of local perturbations of the state @
for large times, i.e. we shall investigate the expressions

o ()=’ (x*(zy)x), xel, o'(x*x)=1, ye¥ (46)

for {—s . Limits of expressions (46) for t— % do not exist for w: the ye and an

arbitrary xe¥, . . . .
IV.1. An example. Let x=a'tah.., y=axan With N>2.
According to (22) we can write

i ~itH, 2
w'(y)=(aian..2", e"akan eMatan..2°) =B, e B,
x

. . . ﬁ ).
ich i Imost periodic function of ¢ (in the m:onw sense
isq_,wﬂﬂ”mawm:,% in AAMV and let [ Y]< Z be the minimal set of the mo:s%wm, L+1,
i ini 91, the C*-subalgebra of U gener-
.....L—1, L} containing Y. Denote by v, ) of 2
M_Mawmé m:w:m A M with Xn[Y]=0. Every elementy of MM:: is a :o::-_E:M onm_.oa.wm
elements from %;,,nY, . Each local element can be written in the form of a fim

linear combination of identify and of monomials

A.@_au‘v C.m— a. S..v Axﬁ_ a.;v , | v 47

i=1 k=1

where all the K, + K; + K, indices m;, s, m are mutually different. hn.” P(,y,) be
a set of all states on %,y,. Define @v,ef(Uiv)) by

&_:Aaﬁn\.vMomo:.AN_ASMBEAS_Sm Y}, (48a)
&:\_AnﬂsvnHmc:.VNNAsmBmiS_Sm Y}. (48b)

The definition (48) determines a unique pure state on the C*-algebra ¥y,

s e o
ompare with the definition (2) of @°). .
MM\ Nn Proposition. Restrictions of the states . (xeWy) to the algebra p) P

i . mﬁ?_ao.gn.m‘&.ﬁze.m‘
e for t—co in the w*-topology.. O ;
MNMMMQV -d=wa’+(1—w) @y, where w= |@°(x)|? and the symbol " denotes
v1) 0= )
here the vacuum state on ¥y,

Proof. Let us write
xQ° =, Q2° + ¢, 2" with (27, Q=02 |=1. (49)

Clearly ¢, = w°(x) and .
lelP=w, lal'=1-w. 50

We get for (46) with the help of 49)
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0 (y)=wa'(y)+(1—w) (2, 7yQ") + ctc: (2", y Q") +

+ ﬁ.ﬁMAbku ﬂmsz.v\b:v. AMHV

According to III. 4. and (49) the two matrix elements of the operators exp ( * itH)

sfa oa TOM —:m—c—ﬂ MMQ:O@ t WF:* (4
€ro nUH C . | ices to

_:m (82%, T.yS2") = @yy(y) for all ye¥,,,nA, (52)

-

and for an mnv:ﬁmnw x€, . Since the definition (48) is unambiguous it suffices to
nnw<o+ En.nﬁmummnn of all the limits in (52) and to prove the equality (52) for
y=a ~.s.Cm_N/:\_v o:@. In proving (52) we can take, moreover, only those y in
(52) which are monomials of the form (47). Since

Q. = M c(X) Qx with c¢(X)eC and ¢(#)=0, (53)

XecY

we can write the matrix element (2*, 7yQ2") i inite li
; , Ty$2") in (52) as a finite | inati
of the matrix elements v o combination

(2., ey e Q)=

=S (QAK'], [m'], €“y2.([k], [m"])) . (54)

(")
(&1, [m"]), e Q,([k], [m])],
where we used the identification according to (10) and where
min (k{, k)=4(Y)— 1, max(k', +m’,, k. + m)<L(Y). (55)

The elements (54) can be nonvanishing (with X', X < Y) only for such monomials
yof E.n mon_.u @7 (y m@._: , y¥ 1) which have all the indices m;, s;, n. > L(Y) and if
there is an index [m"] in the sum in (54) such that

y2.((k], [m"]) = 2.([], [m"]) (56)

_.. Due to (55) and the choice of

: y the r-tuples [m"] and [m'"] differ
one ?oE. another at Bom.H in the r-th component m.". For mnoaﬁnH nrﬁ_mnm of
a Eouom:m_ y m:. ﬁz." matrix elements (54) vanish and the limit in (52) exists. For
monomials y satisfying (56) the matrix elements (54) have the form .

Hr

for some [m

., Amw.ﬂmm k~ »‘ - , itH —itH pios.

ﬁ HH Ha.MH—A\wil € %ﬁiv Am::ﬂ ::vm%i.\:‘. AM\NV
:m Wro.no .mm.K_ +K,#0 5. the expression (47) for the monomial y, then the sum E
(57) is finite and according to (38) the limit of (57) for — c vanishes. A nonzero

limit of (57) might be obtained only for monomials ye%,,, of the type
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K
zH:nwnﬂ. (let 5, <5, <...<Sk)- (58)

i=1
For the s,</(Y) elements (54) vanishes. In other cases (i.e. 5,>54(Y)) a

substitution of (58) into (57) and a use of completness of {f,} lead to the following
form of (54):

s,.—1

8y Bt B, = &, (B €"Bu)

. Qw! s Otw.tmiw: m %5.\.!.. . AM@V

j=t

The finite sum of (59) converges to zZ€ro and we have

lim (Q2x., €'y €7 Qx) = Oxx; ‘ (60)

which gives Smmﬂroa with (49) and (53) the desired equality (52), q.e.d.
Let us define a sequence of local observables in % by

H : + l . ,
K_IN=+_TM1.§:? n=0,1,2, ... 35

Since w” and &_:mﬁﬁ:\_v are pure (hence primary) states and

:EE..G\..VHO.:B&_:G\LHH\N. . .Ammv
an application of a simple lemma from [2] (Lemma 6) gives disjointness of the
states ° and @y, for all finite Y Z. The sequence 7, in (61) is an example of
a “generalized observable” in the sense that the limit

El_maiimxﬂm?@v_: 83
exists in some nonzero representation  of the quasilocal algebra . Specifically,
the weak-operator limits (63) exist in GNS-representations induced by both @’ and
@y, and 7, is a MAacroscopic quantity in these representations (compare 2D.
According to (62) the states w° and @y, are macroscopically different. These

considerations and the proposition IV. 2. show
IV. 3. Corollary. Every local perturbation of the vacuum state w° evolves

spontaneously into a state macroscopically different from w°.
This expresses the instability of ©°. Another unstable state of our system is the
state with all the sites in the lattice occupied (or, with all the spins pointing up).
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