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A QHZHWVF METHOD FOR TESTING THE ANALYTICITY
OF SCATTERING AMPLITUDES

PETER LICHARD?*, JAN PISUT*, PETER PRESNAJDER*, Bratislava

A general method for testing the analyticity of forward or fixed ¢ amplitudes is
presented. The method is based on the statistical approach to the data representation and
analyticity testing and the results are formulated in terms of standard statistical concepts.
The method is able to cope with the general case of not equal and correlated errors of
real and imaginary parts. The practival usefulness of the method was tested by applying it
to the nN forward scattering amplitude F~.

: OBHUA METOJ 1A MPOBEPKH AHAJIUTHYHOCTH
AMILINTY PACCESAHMA

B pa6oTe MPUBOAMTCA OGUIMA METON NS NPOBEPKHM AHAMUTHHHOCTH AMIUTHTYRbI
BNEPEN MAM AMIUTMTYAbI MpH (PUKCHPOBAHHOM [. MeToa OCHOBaH Ha CTaTHCTHUECKOM
NMOAXOjie K MPEACTABNEHUIO IAHHLIX U MPOBEPKE aHANIMTHYHOCTH, NPUYEM PEIybLTaThl
cthopMynMPOBaHbl HA A3bIKE OOLIYHBIX CTATUCTHUECKUX nousTMii. MeTol no3sosseT
paccMOTpeTh OOLIMIA Cly4ait HepaBHbIX ¥ KOPPETHPOBAHHLIX OWHOOK AeHCTBUTEALHON
M MHUMO yacTelt amnauTynst. [IpakTHyeckas MoJIE3HOCTh JAHHOTO METO/IA IPOBEPEHA
ero upnMencaueM K F~ amnauntyne 7N paccesHus Bniepén.

1. INTRODUCTION

The statistical approach to the representation of data by analytic functions
initiated by Cutkosky [1] has developed into an efficient and reliable method for
analytic extrapolations [2], for the evaluation of coupling constants [3], [4], for the
determination of resonance parameters [5, 6, 7}, for testing the consistency of data
on scattering amplitudes with analyticity assumptions [4, 5, 8, 9] and for the
determination of parameters characterizing the amplitude in regions where data
are not available {10, 11].

In the present paper we shall describe a general method for the determination of
the most probable representation of data by an analytic function and for the testing
of the consistency of data with assumed analyticity properties. The method fully
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exploits the information on the real and imaginary parts of the fixed ¢ amplitudes
and treats properly the general case of experimental errors (the real and imaginary
parts may be correlated and may have &mnnna €errors).

The method is, in a perspective, a continuation of the line starting with the
m.uﬁwwm.ww,m paper [1] and continuing further Enocmm Ref. [2], where a somewhat
simplified but more manageable formulation of the problem was given.

In the statistical approach one looks for the function which is the “most

probable” representation of the amplitude if the data and analyticity properties of

the amplitude are known. Due to the statistical treatment of the data the estimates
of the errors of the calculated Quantities are truly statistical. In Ref. [2] the “most
mxovwc_o function” was constructed for the case oOf the errors of the real and
Imaginary nwnm at a given energy being equal and uncorrelated. This, of course
does not uaﬁu;.:m to use the full information contained in the mmﬂm.. .

.:..o construction of the most probable representation of the amplitude was

continued later on in papers by Ross [10, 12] and by Sheppard and Shih [13
14]. In these papers it was shown how the most probable analytic function mroca,
be nm.nmﬁn:nnoa when the errors of real and imaginary parts are unequal and their
uomm_c_m correlations are taken into account [14].

.mo::..oma for cases of the values of the amplitude being exactly known in some
w%m_m.wnﬂam_“oo MNMMMWWAWMW. region were studied in a related context by Nenciu

A few very nn_o<m=.~ and deep observations on the mathematics of the whole
Munnom.nr are due to Pie ,S rinen [17], who also applied a statistical method to the
< QaﬂESmn._oa of scattering amplitudes at a fixed ¢ in the &N scattering [18]

In practice, the most probable function is not, hower, the full solution of .En
problem. <§.2 one needs in addition to it is the information about the consistency
of the data with the assumed analyticity properties of the amplitude. Such a method
has to be based also on the statistical treatment since otherwise the -practical
usefulness of the test would be rather doubtful and the error estimates unreliable

The .vaoEaB of constructing a suitable statistical test of the consistency of H.ro
data with analyticity properties was formulated in the case of equal errors in Refs
[4] m:m .Er and the argument appeared later on in Ref. [5]. In order to test Em
m:m_xzn_ﬂw one needs a set of moments, which are given as inner products of the
mmzv_:cao with a suitable set of functions. The weight in the scalar product is
uﬁwoa% given by the smoothed errors of the data. For practical purposes it is
umEBE.o that the moments be uncorrelated, Gaussian distributed random variables
SE.@;: dispersions. This requirement, together with the weight given by errors
ﬁ.oﬂm.om almost uniqaely the moments to be evaluated. Any other set of anga‘
vill be much more difficult to handle properly from the statistical point of view.

:M: the present paper we shall describe the construction of a suitable set of
ments for the case of unequal and correlated errors. This then permits us to test

]

the analyticity of the AN forward scattering amplitude and determine reliably and

with a truly statistical error the #N coupling constant.
The testing of analyticity is a rather general proceduré which can also be used for

the determination of unknown parameters in the parametrization of the scattering
amplitude.  This point is discussed in more detail in a review paper [19].

The outline of the paper is as follows. In the next Section we shall recapitulate -
the simpler problem of equal errors and formulate the desirable features of
a solution to the problem of unequal correlated errors. In Section III and IV we
shall -discuss an explicitly solvable situation of the general problem, which may
cover most if not all practical applications, Section V contains the application of the
method to the aN forward scattering amplitude. Comments and conclusions are

presented in the last Section.

II. FORMULATION OF THE PROBLEM

A fixed r two-body amplitude is analytic in the s plane with two cuts (— «, ;)
and (s,; =). The calculations are considerably simplified if the cut s plane is
conformally mapped onto the unit disc in, say, the complex x plane. The mapping is
well known and for the special case of the forward pion-nucleon amplitude it is
explicitly given in Ref. [3].

Because the amplitude F(x) is real analytic, we shall suppose that the data
Y(x)= Y(x)+iY;(x) and the corresponding error matrix v,(x) (i, j=1, 2) obey
the following symmetry relations with respect to the real axis:

Y.(x*) = Yi(x) Y (x*)= - Yi(x)
vi{x*) = v,(x) v(x*) = — v,(x)
vi(x) = v, (x).

Following Cutkosky’s statistical approach [1] the data and the corresponding
errors are used to define the probability in the space of functions real analytic
inside the unit disc 9. The non-normalized probability P(F/Y) for a function F(x)

is written in the form [14]:

P(FIY) ~ exp Twﬁzi, (1)

where

KEN =5 5 1R - 0] W) E@- Y@l @)

The symmetric matrix W,(x) is the inverse of the error matrix v,(x) and
F(x)=Re F(x), F:(x)=1Im F(x). It should be noted that v,(x) is the smoothed



ownon matrix. Its relation to the actual error matrix measured in discrete points is
m_mncmmoa in detail in Refs. [2, 4] and [14]. In a similar way Y(x) is a smooth
Interpolation of the data. If the data are not available along the whole boundary,
onm has to use some hypothesis on the behaviour of the amplitude in the unknown
region and assign errors to that hypothesis (for more details see Ref. [2))..

The probability in Egs. (1) and (2) may be interpreted in two ways. Either ‘as
a probability in the functiona] space; in that case Y(x) is considered as fixed. Or,
alternatively, we can a&:x of F(x) as of a true, though unknown, amplitude and
regard (1) and (2) as a probability assigned to various possible experimental
outcomes Y{(x). In the present paper we shall stick to the latter interpretations.

If the errors of the real imaginary parts are equal and uncorrelated, Eq. (2)
simplifies to )

XEIY) =50 § W) |FG)- ¥ x| ®
=(F-Y,F-Y),.
where we have defined the inner product
(F, G) =5 § WP (2)G(x) . @

For this particular case the test of analyticity and the determination of the coupling
constant are rather simple. We introduce first the function w(x), which is analytic
-and free of zeros in 9 and obeys the condition

W@ =[W@DI™  for [x|=1.
The system of functions .
P(x)=x"w(x), k=0,-1, -2, ...

is then oﬂvomo:m_ and nor:malized with respect to the inner product (4). Supposing
that F(x) is analytic in 9 we can expand F(x) and Y(x) into the series

F(x) uM cPu(x) )

Y@= 3 apx). 6)

The probability ( 1) then becomes a product of the terms
i . .
€xp *IM AQ» - G»vuw - (7
and it is easy to see that Qe=gq_, for k=1, 2, ... are Gaussian distributed with
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vanishing mean values and unit standard deviations. To test the analyticity one thus
only needs to calculate the coefficients

0»"~T|.35 \AHMVN.,...
and check whether the values found are consistent with the Ni (0, 1) distribution.

If the amplitude has a single pole

F(x) u.w+M ax*, (8)

the residue R is determined as follows. The expansion (5) can be rewritten as
F(x)=R'P_(x)+ 3 c.Pi(x), 'C))
N k=0

where R’ = R/w (0). Inserting (6) and (9) into (3) we obtain the probability (1) as
a product .

PEIY) ~ exp { =3 (@i~ RV} 1l exp {301 1 exp Twsﬁpl.

k=2

The coefficient Q, thus determines the residue and the remaining Q,, k=2, 3, ...
can be used to test the analyticity of the amplitude.

The problem of unequal and correlated errors can be solved along the same lines
provided that a suitable generalization of the set {7, (x)} is found. The problem is

formulated as follows.
Let % be the set of all functions defined on the unit circle €, fulfilling the
conditions F(x*)= F*(x) and having a finite norm induced by the inner product

(F. G)=3=$ 3 E()7 (1) Wilx) |d]. (10)
If we define

W, () =3 [Wa(®) + Was(x)]
W(x) =5 [Whi(x) — W) — 2i Wia(2)],
the inner product (10) can be rewritten into the form [14]
(F. 6)=3; § FFIGWW.(0) x| + 5  F) 6w (s lax . (11

Let of* be the subspace of £ consisting of boundary values of functions analytic in
the unit disc 9 and let N* be the orthogonal complement of &2 in the space %~
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Orthogonality is understood in the sense of the inner product (11). What we need is
a basis {P,(x)} orthogonal and normalized with respect to (11) and such that

_v {P(x)} £=0,1,2, ... is complete in o2,
i) {P(x)} k=-1,-2,. is complete in A2,

Inserting the nxﬁmnmmoam (5) and (6) (where P, (x) denotes now the new basis) into
the Eqgs. (1) and (2) we obtain immediately the probability P(F/Y) as a product of
terms like (7). The coefficients

O»mﬁlknﬁwlku M\v

can be used to test the analyticity of the amplitude in exactly the same way as
before. To determine the residue of the amplitude we only need to find the
€xpansion (9) in terms of the new basis and proceed as before.

A suitable basis for of? (in the case v::=0) has already been constructed by
Ross[10, 12] and an approach based on reproducing kernel functions was given by
Sheppard and Shih [13] and by Nenciu [15]. A solution for the case of unequal
errors on the boundary plus additional data inside the m:m_v.in:w region was found
by Prednajder [16]. Recently, Shepard and Shih [14] generalized their
approach [13] having included correlations between the real and the imaginary
parts of the amplitude.

The construction of a suitable basis {P(x), k= —1, —2, ...} which spans the
space- #* is the problem discussed in the following two sections. The solutions
which we shall present apply only to a restricted class of error matrices. The
restriction is of minor importance for practical applications since the class of
EoEan which can be treated. by the method is sufficiently broad.

IIl. A SPECIAL CASE OF Wi(x)

In this section we shall construct the basis {P,(x), k=0, + 1, £2, ...}, which is
orthonormal with respect to the inner product (11) for the case of

W_(x) = m(cos @) +i sin @my(cos @), (12)
where 7, (.) are polynomials of the order n; and
1 i
cos g=3(x+x7) (13)
1

sin QHMC«I.«LV

for [x[=1. Making use of Eqs. (12) and (13) we have
W_(x)=x"H(x), . (14)

where n =max (n,, n,+ 1) and H(x) is by construction a polynomial of the order

2n.
In the space #* we shall start with the basis

Ai(x) x*w(x) k=0,1,2, ..., (15)
where w(x) is analytic and free of zeros in @ and such that
[w@)|=[W.(0)]™*  for x| =1. (16)
Inserting (14), (15) and (16) into the inner product (11) we find
(A, A)=6u+an sy, (17)

where a,, are the coefficients of the Taylor expansion of H(x)w?(x):

H(x)w(x)= W a.x™.

m=0

By definition a,, =0 for m<0. Equation (17) then implies that the functions

Ai(x), kzn+1
form an orthonormal set. Moreover, any function of this system is orthogonal to the
functions
Adx), k=0,1,2,...n. (18)

The set (18) can be orthogonalized by standard procedures and the basis P,
constructed in this way is

P(x)=> CtA(x) k=0,1,2,...n 19)
=0
P (x)=A.(x) kzn+1.

In order to construct a suitable basis in o we thus only need to calculate the n + 1

coefficients ay, a,, ..., @, and make a standard orthogonalization procedure*.
For our purposes, namely for testing the analyticity, it is more important to have
a basis P (x), k= —1, — 2, ... which spans the space A”. We start again with the set

Ax)=x"w(x) =-1,-2,...

and subtract from each A, its projection onto s Denoting such projection by
Ci(x) we have

* This basis in o is actually a special case of that constructed by Shepard and Shih [14] and (when
putting W,,=0) of those constructed by Ross [10, 12], Shih {20], Shepard and Shih {13] and
Prednajder [16].
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G =3 (B, A,) P(x)=

=0

n+k

=2 (PLA) P+ S au, Afx)
= I=n+1
.moq k=-1, - 2, e where we have used the relation (17), which is valid for any
integer 4, / (including negative values) and the second relation of Eq. (19). The
system of functions

Nw»?«vnu\?kkvl Ci(x)

is c« .nonmc‘:n:on orthogonal to o> w:a spans the space A°. In order to find
explicitly the system B, (x) we need to calculate first the projections C,(x) and for
that we only need to calculate the inner products (P,, A,) and determine the
moomm_n_o:a aforn+1<j<n+k. The calculation of these quantities numerically
IS an easy matter.

:.. the next .mmaﬂio orthogonalize the system {B.(x)} finding thus the desired
basis { P, .A.«.v.v in A7, It is useful to make the orthogonalization by choosing suitably
the coefficients 4 in the expansions

k=-1, -2, ..

. )
N?&MM d.B,(x), k=-1, -2, .. (20)
=1
In this case |

P.(x) HR*N‘»AHV.

where T, (x) are functions regular in the unit disc. The orthogonalization indicated

in (20) presents no practical difficulties. A similar procedure can be used also in the
case when

k=-1,-2,..,

m(cos @)

W.(x)= m(cos @)
. n,(cos @)

m(cos @)

+isin @

where 7, are polynomials. The problem is only formally more complicated and we
shall not discuss it in detail.

IV. SIMPLE EXAMPLES

Let the scattering amplitude we are interested in have a pole-in the origin of the x
plane:

F(x)= W + analytic function . . (21)
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We wish to determine the residue R which is proportional to the coupling
constant. We shall first expand F(x) into the set of functions P.(x) described
above. In this way we have

F(x) MW P_.(x) + analytic function,
where k&= T_, (0). From the properties of the function P,(x) it follows that
R
(F,P.) =z (22)
(F,P_,)=0 n=23, ..

If Y(x) is the smoothed interpolation of the experimental data about the amplitude
F(x), then Q,=(Y, P_,) are random Gaussian distributed variables with a _,5:
standard deviation around the mean (F, P.,).

The first relation in (22) then gives the values of R and the corresponding error:

R=kQ,+k=R., *+k.

Let us consider now the simple case of constant, equal and uncorrelated errors
vn(x)=v(x) = €%, v,,(x) =0. Then
n=1,23, ..

P (x)=x"¢,
so that T, (O)=k=¢. As expected the error of the result is equal to ¢
R=R.,te¢. (23)
Let now the errors be constant, uncorrelated but not equal:

vn(x)=€l, via(x)=¢e3#€}, v,(x)=0. It is easy to show that in this case

P (x)=ax™"+bx", n=1,2,3,...,
where
auAmw+mva vumwlmw
2 ’ 2a
Now T_, (0)=k =a and instead of Eq. (23) we get
R=R., *a.

In a method capable of dealing only with equal errors one has to enhance the
smaller of the two errors to the value of the bigger one

e=max (&, &)<Vel+ei=a V2.

It is easy to see that by using the method of unequal errors we can at most gain
a factor of V2 in the accuracy of the final result.
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If, however, some additional information about the amplitude F(x) is known
beforehand, we can gain considerably by using the method of unequal errors. This

is in .ﬁmnmn:_ma true for superconvergent amplitudes. To make the point clear let us
consider firstly the function

Gx)=g+ax+ax’+..

and let g be the parameter we wish to determine. If the errors are uncorrelated,
constant and equal, we have

P(x)=¢

and by the same procedure as above we get

g=gateE.
Let now the errors be unequal, v, (x)=¢] and v,,(x)=¢2 &> ¢&. In that case

Py(x)=¢ 24)

and

9=0g.tg &<max (&, &).

In this way the unequal error procedure leads to a much more accurate result.
If the amplitude is superconvergent, the determination of the coupling constant
can be performed with the accuracy of the (better known) imaginary part. To see it
mmn us suppose that F(x) is given by Eq. (21) and that for x — —1 (x= —1 is the
image of w = in the original energy plane) its absolute value behaves like .

[F(x)|~]1-x]**,

F urther, let us introduce a function Hi (x), which is real analytic within the unit disc,
purely imaginary on the unit circle and has a simple zero in the origin. Such
a ?noa.oz must have a singularity at the unit circle (since otherwise the
non-vanishing imaginary part of H(x) implies that Re H(x) cannot be identically
zero). An example of a suijtable function H(x) is

x AHIkVN
1-x*\1+x/ "

£>0,

mﬁwv =

For x =exp (i @) we have

H(' ") = Iwﬁm%?+£fwmv.

The product G(x)= H(x)F(x) is real analytic inside the unitdiscand its behaviour
near x = —1 is controlled by the relation

G| ~ [1+x*",  &e>0.
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so that the moments (G, P,) are well defined. The error of the Re G(x) is
proportional to the error ¢ of the imaginary part of F(x). According to the result
obtained above (24), the value of the function G in the origin G(0) = H(0)R (and
therefore also the residue R of the amplitude F(x)) can be determined to the
accuracy which is proportional to ¢, . This, of course, is what we have to expect. If
F(s) is superconvergent, the residue in s=s, can be calculated simply by the
Cauchy theorem and in this way the residue is given as an integral over the
imaginary part of the amplitude. If the amplitude is not superconvergent, this
approach cannot be used. A subtraction constant crawls into the dispersion
relation, this subtraction constant can be evaluated only by using the information
about the real part of the amplitude and the coupling constant can be determined
only with the accuracy with which the real part is known.

V. APPLICATION TO THE N FORWARD
SCATTERING AMPLITUDE F-

We shall describe here an application of our method to a realistic situation. The
most suitable candidate is apparently the ZN scattering which is well understood
theoretically and where the data are relatively copious. We shall discuss here only
the crossing odd forward scattering amplitude F~, which is less sensitive to
assumptions of the high energy behaviour than the remaining forward amplitudes.

We-are mostly interested in comparing the present general method with the
equal errors version used in Ref. [9]. We shall therefore use here only the data .
obtained from the phase shift analyses in spite of the fact that more accurate data
about the imaginary part can be extracted from total cross-section measurements.

The calculation was analogous to that of Ref. [9], wherever it was possible. For
details, in particular for.the parametrization of the amplitude in regions not
covered by phase shift analyses, the reader is referred to our recent work [9].

The most delicate point in using the data from phase shift analyses is the question
of errors and correlations. For example, the CERN 67 analysis [21] gives the errors
of both phase shift and elasticities, but the complete covariance matrix is not
available. Because of that and for the sake of simplicity we shall assume that the
real and imaginary parts are uncorrelated. In order to compensate for the possible
lowering of actual errors introduced by this assumption we shall take a rather
conservative error estimate of both real and imaginary parts. The errors are
calculated by using the following formulae :

27 +1 mw Nﬂ mwQNﬂ
Og = .M * wm DQ.._.T an Dd..:

i=1

Iﬁ +~ wmahu wmamu. w
.Q~|_.M ﬁwu. baM._.T an; Bd._ ’

fel



where ¢,

s of ”rwnuaw_h”“_oa%o_. AMOMMBOO”—_@& errors of the real and the imaginary
, an . ; i

elasticities, respuctively. ; and A7, denote the errors of phase shifts and

The C i
one. ;ommmuuww H:m_ﬁom [22] is clearly an improvement of the previous CERN 67
71 anlst ,r owever, does not quote the errors. In working with the CERN
¢ have therefore taken the function W, and W (which are

The numeri
merical procedures needed for the application of the general method (see -

Section III i i

case [9). FVONM_M nowwmg_“”ﬂw_v. more moEEBwSQ than those needed for the simpler
inserted fhi flats furrcn o e Mm_nc_mzoam cu.mma on the general method we have first
new progiame Tn o qual errors) used ..: the previous calculations [9] into the
meriea] procedurss ~€m< we were testing both the general method and the
unequal ereome 1o oao.n ~z ﬁm .:Q: stage we have used the general method with:
relizbie cstimate of o 00 :.:: the more sensitive test of analyticity and the more
ST 5, s ._,mc_ooo_cu__nm oon.umBE. The results of the two calculations are
ek A, - where, in order to facilitate the comparison with the

» We als0 present the results obtained by the equal errors method [9]

Table 1
CERN 1967 CERN 1971
£ 12
— m 2
E X2-20
qual n:.o_,mw 0.0812 6.0 0.0803
method [9}] +0.0018 : 6.0
Present method ; +0.0018
with equal
’ 0.
uncorrelated errors +0 WMMM 73 0.0804 74
Present method - - +0.016 o
with non-equal, ’
’ 0.0813
uncorrelated errors L0014 13.0 0.0804 13.6
i " +0.0014

The comparison of the an yticity testing and estimates of
) aly tes! i {
(tirst > . .nq g S| tes of f* based on the method of equal errors

dife qual errors input (second row) and i
ifferent but uncorrelated errors (third row). The subscripts 3 A mn_..n_,m_. O
o, pts on x* denote from which Q.x* was

The re i
method: NM.“M o_Mm Eo. Table clearly show that for the case of equal errors both
entially to the same results. This also shows that the numerical

procedures used in the more gener. ntroduce
1diti i . .
ronres . general case are reliable and do not int

Finall indi |
y, the results indicate that the method of unequal.errors will lead to a more
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accurate determination of the coupling constant when the error of the imaginary
part will be such smaller than that of the real part. The discussion in Section IV,
however, indicates that one can at most gain a factor of about 27"% in the error
estimate (and a much larger improvement for superconvergent amplitudes). In our
case the improvement is only marginal (compare the second and the third rows of
the Table) since both the real and the imaginary parts were taken from phase shift
analyses, where the errors o and o, are of comparable magnitudes.
The increase of the quantity :

NN“M Ow-u

(see Table) is due to the narrowing of the error corridor. It is worth stressing that
all the x* in the Table are perfectly acceptable from the statistical point of view.
This also shows that the data about the amplitude F~ fulfill the expected analyticity
requirements. Apart from the values of y* the analyticity of the data is also
indicated by the fact that three estimates of the coupling constant based on the
completely different numerical procedures lead to the same result. But the
comparison of the first and the second rows of the Table shows that the present
method probably slightly underestimates the error of the coupling constant. We
shall therefore take as a final error estimate the value 0.0016.

V1. COMMENTS AND CONCLUSIONS

The general method for testing analyticity, for the search of the most probable
analytic representation of data "and for the calculation of coupling constants
presented above is able to make full use of the information contained in the
experimental data*. The method is based on the statistical treatment of the
experimental data and the results of the testing of analyticity can thus be expressed
in statistical terms well known from the testing of hypotheses. The procedure
described in this paper can also be used in constructing the basis in & (the space of
analytic fuctions), i. e., in looking for the most probable analytic representation of
the data. Comparing it with the method based on reproducing kernel functions [14]
which requires solving integral equations one can immediately see the advantage of
our method being in simpler mathematics. On the other hand, in the Shepard and
Shih approach [14] no special form of the error matrix is required.

It is worth stressing that passing from the simplified [4] to the general (and more
complicated) method of analyticity, the testing described in this paper is not always
very advantageous. In determining the value of the coupling constant one can gain

* Strictly speaking, the method Tequires that the inverse smoothed error matrix can be approximated
by polynomials. In the majority of practical applications this can always be done.
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.o::\.m factor of about 27 in the error estimate even if the accuracy of the
imaginary part is much higher than that of the real part. The only exception here is

v=0, £=0. The importance of this problem (and the related calculation of the o
term) has been stressed by Héhler et al. [23] (see also Refs. [24] and [25]).

,E..n data on the ZN scattering amplitudes we have used in our calculations
ooq._m_:: that the 7N interaction is consistent with the locality of the interaction
AS_nnoomEm:Qv. As a byproduct we have obtained the value of the coupling
constant together with its statistical error estimate. The value found

f*=0.0805+0.0016 (from CERN 1971 analysis)

is consistent with the recommended value [26] A\N =0.081 +mewv, with Sznajder

seems to vn in complete disagreement with the Saclay 1973 result [32]
(FF=0.0742+ 0.0013). This disagreement is, perhaps, partially caused by the fact
that new data have appeared after the CERN 1971 analysis was ooav_m:wa. But, on
.En other hand, the new total Cross-section measurements [33] have been included
in calculations of Ref. [27] which give a f* very near to our value.

All this clearly shows that in the present stage the systematic errors (for example,
those connected with the Coulomb barrier corrections and with the contribution of
the unphysical continuum arising from the processes T p— ynandx"p — %)
are :.Eo: more important than the purely statistical errors of the data. This
question has been discussed very thoroughly in Ref. [31] and in a very recent paper
by Woolcock [34]. According to the results of Ref. [9] the statistical errors of data

wMME to be small enough to allow investigation of the isospin invariance breaking
effects.
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