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THE VOLUME PINNING FORCE FOR COMBINED
ATTRACTIVE-REPULSIVE FLUX-LINE DEFECT
INTERACTION POTENTIALS

SILVESTER TAKACS*, Bratislava

It is suggested that the form of the interaction potential between defects and flux lines
can play an important role for the pinning of flux lines in superconductors and thus for
the value of the critical current density. In some cases (e. g. stafistically distributed dense
point defects, dislocations), the defect — flux line interaction potential can be of a very
complicated form. We calculate the volume pinning force under the assumption that the
elementary interaction force between the defect and the flux line is a combination of
attractive and repulsive labels and we obtain large differences in the dependence on the
order of the potentials (attractive-repulsive or repulsive-attractive, respectively). For the
repulsive-attractive combination, the deviations from the quadratic dependence of the
volume pinning force on the maximum elementary interaction force are considerable,
mainly for smaller elementary interaction forces, whereas this dependence is nearly
ideally quadratic for the attractive-repulsive combination of the interaction potentials.

*  The possibility of explaining the unexpected increase of the volume pinning force at
small defect concentrations in superconductors with statistically distributed point defects
is given.

OFBEMHAS CHUIIA NTHHHUHTA
N KOMBUHHPOBAHHBIX OTTAJKHBAIOME-NPUTATUBAIOMUX
MOTEHLHAJNOB B3AMMOJIENCTBHA MEXIY JHHEN ITOTOKA
N JE®EKTOM

Mpeanonaraetcs, 4to ¢GopMa nNOTEHUMANa B3aUMOOEHCTBHA MeXny naedexTamu
M JIMHMSAMHM TOTOKAa MOTYT MIpaTh BaXHOE 3HAYCHNE B MUHHMHTE JIMHMA HOTOKA
B CBEPXNPOBOJHHKAX, U BCAENCTBUE TOTO NS 3HAYCHUA KPUTHUECKOH NIOTHOCTH TOKA.
B HEXOTOPBIX Clydasx (HaOpHUMep, CTATHCTHYECKH PACTPEAENEHHBIE [LNIOTHLIC TOYEHBIE
nedeKThi, IUCIOKAINHU) NOTCHUMAN B3aNMOICHCTBHA MEXTY NeEKTOM H IMHHEN NOTO-
Ka MOXET MMETh OYEHb CIIOXHBIA BHI. B faHHOM ciydyae paccYuTaHbl 0GEMHbIE CHIlbI
MUHHMHIE B IPEANONOXEHUH, YTO INEMEHTAPHAA CHJIa B3aUMOACHCTBUA MexXay Aedek-
TOM M IMHHEH NOTOKA ABAAETCH KOMOMHAuMell MPYUTATUBAIOILErO ¥ OTTANKUBAIOWETrO
THOOB. Mb! MOfiyuunn GONbIIYI0 Da3HALY B 3aBUCHMOCTH OT FOCAENOBATENbHOCTH
MOTEHUMANOB (NPHTATHBAIOIMA-OTTANKHMBAIOWMA UIH OTTANKHBAIOWHA-IPHTATUBAIO-
wnid). [Ins KOMOGMHALIMM OTTANKUBAHNE — MPHTAKEHUE OTKAOHEHHS OT KBAAPATHYHON
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32BHCHMOCTH OGEMHOM CHALI NUHHUHTA Ha MaKCUMHME CHNbI INIEMEHTAPHOTO BIAHMO-
NEHCTBUA SIBNSIOTCH 3HAYUTENBHBIMH, NPEXNE BCEro MUl MANbIX CHA 3NEMEHTAPHOTO
B3aMMONEHCTBHA, B TO BPEMs KakK 3Ta 3aBHCHMOCTH 611M3Ka K TOYHO KBafpaTU4HOM ans
KOMOMHaLHKN NPHTATHBAIOWIE-OTTANKHBAIOIMX NOTEHUHANOB B3auMoneiicTsus. [Ipuso-
ANTCH BOIMOXHOE O6BACHEHHE HeNpeABMAEHHOTO POCTa OGEMHOR CUJIbI TUHHHMHTA AR
MaNbIX KOHUEHTPALMi fedexToB B CBEPXMPOBOIHNKAX CO CTATHCTHMECKH PACHpPEReNnEn-
HBIMH TOYEYHLIMH fedexTamu. .

L. INTRODUCTION

The mixed state [1] of type 1I superconductors — consisting of quantized flux
lines (flux tubes, flux threads, vortices), arranged in a regular lattice almost in the
whole range of magnetic fields between the lower (H.,) and the upper (H.,) critical
magnetic fields — is unstable against applied forces on the flux lines. Under the
influence of applied forces (e. g. the Lorentz force in case of the transport current
perpendicular to the flux lines) the flux lines begin to move. This motion is
accompanied by energy losses (thus by heating the. superconductor), which would
destroy the superconducting state — the material would £0 normal.

It is proved beyond doubt that the ability of type II superconductors to carry high
electric current with negligible losses is caused by the presence of defects and
inhomogenities in the crystal lattice of the superconductor.

The crystal imperfections interact with the flux lines by various interaction
mechanisms (from which the elastic interaction, the so-called Ax-interaction and
the diamagnetic interaction are the most important), preventing thus the free
Boao.: of the flux line lattice (pinning). The most important defects, which can lead
to very high critical current densities, are the dislocations and dislocation networks,
phase and grain boundaries, precipitations, defect cascades (e. g. after neutron,
light or heavy jon irradiation), etc. :

All pinning mechanisms can be understood qualitatively (and some-of them also
quantitatively) by considering the flux lines as’consisting of normal kernels of the
dimension & (the coherence length of the superconductor), around which the flux
quantum of the vortex is screened by the microscopic supercurrents in the distance
A (the penetration depth of the magnetic field).

However, the problem of calculating the volume pinning force — even at
a known elementary interaction force between the flux lines and the defects — is
a very complicated statistical problem. This is mainly caused by the fact that for
most of the known interaction mechanisms between the defects and the flux lines
the maximum elementary interaction force between the individual flux line K, is
smaller than the interaction force between the neighbouring flux lines.

The repulsive interaction forces between the flux lines of the flux line lattice are
given in principle by the interaction of their electromagnetic fields (it is some kind
of dipole-dipole interaction). This interaction causes the arrangement of flux lines
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in the form of a regular lattice (the same arrangement is obtained for magnetic
needles in a closed tube). As a consequence of the interaction between the flux
lines, the flux line lattice has its elastic properties, which can be described by means
of the elastic constants, as in the crystal lattice. .

Since the flux line lattice spacing (i. e. the distance between the flux lines), as well
as the interaction force between the flux lines are determined by the magnetic
induction B in the superconductor, the elastic constants of the flux line lattice are
also functions of B. .

Through strong flux line — flux line interactions, each deformation of the flux
line near the defect results in a complicated response of the flux line lattice near-the
defect. The force on the flux line lattice must involve therefore the function of the
elastic constants ¢, of the flux line lattice.

Moreover, for statistically distributed defects, the individual forces on the flux
lines are different (some of the defects do not even interact with any flux line), and
thus the calculation of the force in a larger volume (i. e. the volume pinning force)
is a very complicated statistical problem.

One can illustrate this fact by the following extreme cases. For completely
flexible flux lines (i. e. by neglecting the elastic properties of the flux line lattice),
the individual forces on the flux lines would be summed up and we would have

F,=ZK,.

In case of very strong elastic properties of the flux line lattice (in the limit case:
rigid, i. e. unflexible, flux lines) or for an ideally homogeneous distribution of dense
defects, we would obtain no volume force on the flux line lattice. The forces on the
single flux lines would cancel each other in a larger volume of the superconductor.
We need in this case an infinitesimal force for moving the flux line lattice, as the
energy of the lattice is the same independently of the coordinates of the flux lines.

The realistic situation is somewhere between these two extreme cases: the flux
lines are not rigid, they can be deformed near the defects, but these deformations
are strongly reduced by the elastic properties of the flux line lattice (and also by the
line energy of the flux lines if the increase of the flux line length at this deformation
is considerable — this happens only for very strong interaction forces defect — flux
line, which we do not consider in the present paper).

Labusch [2] has contributed in a basic way to the solution of this problem. He
obtained for the volume pinning force

m\“zaw:\ﬂﬁ:umvu . Aﬁv

where N is the density of “obstacles” for the flux lines, K,, the maximum

elementary interaction force between the individual defect and the individual flux

line and f is the function of the elastic constants and of the magnetic field.
The “obstacles” in the Labusch theory can act as repulsive potentials (barriers),
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as well as attractive potentials (wells). As noted by Labusch [2], the resulting
.<o_=50 pinning force is the sum of the volume pinning force from both types of the
interaction (if they are present and they do not interact yet).

The somewhat surprising quadratic F,(K,,) dependence (and some consequences
of this result [3], as well as another result of the Labusch calculation — the
existence of the threshold value for the flux line deformation below which the
defect cannot contribute to the volume pinning force) is proved experimentally
[4—7]. The resulting volume pinning force is much smaller than the sum of the
elementary interaction forces on the flux lines.

Both results of Labusch can be explained very convincingly by using model
potentials for the interaction defect — flux line [8, 9]. The finite volume pinning
force for randomly distributed defects comes from the asymmetric distribution of
.::x lines on both sides of the defects. We explain this by considering repulsive
interaction defect — flux line (some of these explanations will be more understand-
able in Sections 3 and 4). .

As the flux lines come to one side of the defects (they are pressed onto the
defects in the direction of the applied force), some of them are held by the defects
on this side, although they would be already on the other side of the defects without
the presence of the defects. The defects act on more flux lines on one side of the
defects than on the other one. Because the individual forces show in different
directions on both sides of the defects, we obtain a net volume force on the flux line
lattice. .

Since the spatial interval of these asymmetric flux line positions 4 increases with
the maximum elementary interaction force K., and the force on the flux lines is
nearly K, for most of the flux lines lying in these asymmetric positions, the
resulting volume pinning force F,~K:. :

We obtain also the existence of the threshold value for the pinning: at a smaller

K. the defect daes not cause any asymmetry, the flux lines are on the same sides of
the defects, as they would be without the presence of the defects. S
Generally in all papers dealing with problems of pinning, the interaction between
defects and flux lines was supposed to be given by a simple potential barrier of
a potential well for the flux lines. This can be sometimes a very rough assumption
and can lead in some cases to quantitatively untrue results. We give some
arguments for this in the next Section.
. Besides, the identical contribution of defects with attractive and repulsive
Interaction potentials — which was considered to be fulfilled at the application of
the Labusch result (1) — could be rejected by calculations with a model as well as
realistic interaction potentials defect — flux line [9, 10, 11].
F the next Section we give some examples for the cases where the assumption of
single attractive or repulsive interaction could be incorrect. In the two following
Sections, we calculate the volume pinning force for combinations of attractive and
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repulsive interaction potentials and in Section 5 we discuss the obtained results,
mainly with respect to statistically distributed point defects.

Il. THE RANDOMLY DISTRIBUTED POINT DEFECTS AS AN EXAMPLE

In our previous work [12], we were able to explain most features of the measured
volume pinning forces in niobium with statistically distributed point defects
(Frenkel pairs) by considering the defect density fluctuations as the main sources of
the pinning. Namely, statistically distributed defects of small dimensions (with
respect to the coherence length, or the penetration depth of the magnetic field, in
dependence on the interaction mechanism between defects and flux lines) should
not contribute to the volume pinning force, as mentioned above. In most cases
there are many defects in the interaction range of each flux line, the number of
them on both sides of the flux line is nearly equal, their action on the flux line
cancels out, therefore the total force on the flux line should be zero.

If seen in this light, the possibility of measuring finite volume pinning forces on
the flux line lattice in superconductors with statistically distributed point defects
[12] came somewhat surprisingly. But the idea that in the spatial distribution of the
point defects statistical deviations from the mean defect density N can be expected,
gave the explanation of the linear dependence of the volume pinning force F, on
the mean defect density N at smal defect concentrations.

Since the mean square deviation of the number of defects acting on a flux line
element

Ve —p2=Vh

determines in principle the elementary interaction force between the flux line
element and the volume element in which the flux line element is placed (these
volume elements are supposed as elementary defects in the following | 12]), and
F,~K,, we obtain the desired F, ~N dependence.

In paper [12], quantitatively also the saturation and the following decrease of the
volume pinning force at larger defect concentrations, as well as the magnetic field
dependence of the volume pinning force at a given defect concentration, could be
explained. However, there remained two regions of discrepancies between the

theoretical and the experimental results.
a) The increase of the volume pinning force at small defect concentrations is

stronger than calculated from the simple statistical considerations (mainly in

smaller magnetic fields).
b) The volume pinning force drops to zero at magnetic fields smaller than the

upper critical field B,, (from theoretical calculations, F,—0 at B,, as (1-b),
where b = B/B.,,).
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These deviations could not be explained by considering the cut-off of small
interaction forces below the threshold -value [2].

We tried to explain both these discrepancies by considering some correlations in
the defect numbers of neighbouring characteristic volumes [13]. These correlations
set the statistical theory of pinning on point defects on a more solid basis.

In these 8:&%3:0.3, the elementary interaction force is given by the
difference of the defect numbers on both sides of the flux lines, which is a very
realistic assumption.

Moreover, other distributions of the defect numbers n (in the characteristic
volumes) than the Gauss distribution, and the influence of the cut-off elementary
interaction forces below the threshold value could be simply considered.

But, both the statistical correlations and the special defect distributions in the
characteristic volumes, as well as the mechanism of the cut-off did not lead to the
explanation of the effects which cause the discrepancies mentioned above.

The main contributions to the volume pinning force are given by the volume

elements with n’ =73 + V7 defects (here 7 is the mean number of defects in the
characteristic volume = £°, which corresponds to the mean defect density N). The

elementary forces from volumes with ln—A|<VE decrease rapidly with the

difference |n — 1|, as well as the statistical weight of the numbers |n — 71| > V7.

In [12, 13] we have assumed that these volumes act on the flux lines as given in
Fig. 1a. The flux lines “feel” the potential barrier (or potential well) from the given
volume, if n>7 (or n<n), whereas the neighbouring volume elements should
have n = 7. This assumption is very rough, as from statistical reasons we can expect
that the defects which are missed (or which are above the mean value) in some

7

element, will be placed (or missed) most probably in the neighbouring volumes of

this element.

The interaction energy with respect to the flux line positions (under flux line
position or flux line coordinate we mean in the following always the coordinate of
the flux line centre) near these volume and the force on the flux line will therefore
look like the functions in Fig. 1c.

As an intermediate step between the case of Fig. 1a and 1c¢, we consider the
potential form and the force in the form of Fig. 1b, which has the advantage that
the force can be described by a simple quadratic function (the equation for the
equilibrium position of the flux lines is then a quadratic equation and like the
model potential [9]), the considerations and the calculations of the volume pinning
force are very lucid and illustrative. .

Since more complicated forms of the interaction potential can be constructed
with the aid of the potential forms of Fig. 1, we expect that these potential forms
(i. e. the combination of the attractive and repulsive labels, where at least for the
statistically distributed point defects both “turns” are equally probable) can give
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some characteristic features of the statistical theory of pinning with more compli-
cated interaction forms.

This form of the interaction potential is very probable also for dislocations (or
possibly other defect structures), where, e. g. the electrostatic potential is without
fail of this form (as on one side of the line dislocation there are more, on the other
side fewer ions than the mean ion density in the crystal is).

The elementary interaction potential and the elementary interaction force are

taken to be vanishing in the distance A, the interaction range of the volume

element. Then we have
£=¢(1+x—2x"sign x + x?),
K=1+K,(1+3x>-4x)=K.,,

where x=£/A, & is the distance of the flux line from the boundary between the.
volume elements (the origin of our coordinate system), K,, the maximum value of
the interaction force (K,, =1 for x= 0, the other two extremum values are
|K.|=1/3 at x| =2/3,+ means the combination of the repulsive-attractive and
attractive-repulsive potentials, respectively (dashed and full lines in Fig. 1b). £ is
the energy of the flux line in volume with the mean defect density (n = #).

We would like to mention that in our considerations, as well as in the discussion
of the results, we suppose that the concrete form of the potential does not influence
considerably the results, as in the case of the simple interaction potentials [9, 10).

IIl. THE COMBINATION OF THE REPULSIVE-ATTRACTIVE POTENTIAL

In the following considerations, we assume that under the influence of applied
forces (e. g. the Lorentz force) the flux lines come to the defect (or to the defect
structure) from the left, i. e. the defect begins to act on the flux line at
E= —A(x= —1). The coordinates of the flux lines at larger distances from the
defect are signed A (or a=A/A in relative coordinates). These coordinates
correspond to the flux line positions in which they would be without the presence of
the defects. : :

In large volumes of superconductors, the coordinates a (i. e. the distance of the
undeformed flux lines from the defect centre) are equally probable. This is very
useful for the statistical summation of forces on the flux line lattice in larger
volumes of the superconductor, i. e. also in calculating the volume pinning force
(the resulting volume force on the flux line lattice from all defects in this volume).

In calculating the possible positions of the flux lines near the defect, it is more
advantageous to work with the positions of the deformed flux lines x. These

positions are determined by the equilibrium of the force from the defect and from

the neighbouring flux lines, as mentioned in the Introduction.
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The force from the defect is given by Eq. (2). The distortion of the flux line under
the influence of this force causes the deformation of neighbouring flux lines in the
flux line lattice (Fig. 2), and. the interaction with these flux lines compensates the
force from the defect. .

Fig. 2. The deformation of the flux lines near
a defect (schematically), a=A/A — the
“natural” (i.e. undeformed) position of the flux
line, x=¢/A — the coordinate of the deformed
flux line near the defect (A — the interaction

range of the defect)

We assume that the flux lines are arranged in a nearly regular lattice in larger
volumes of the superconductor (this is the so-called lattice approximation ; other
possible arrangements of the flux lines are, e. g. the fluid approximation and the
rigid lattice approximation) and the response of the flux line lattice to the
deformation is described by only one “effective” elastic constant ¢ which is
a combination of the single elastic constants of the flux line lattice (so, €. g. for the

GL parameter [14] x> 1 and B=B.,,/2, there is o~ V €CisCes).

Our further considerations hold in the so-called dilute limit, i. e. the defects act
“individually” on the flux lines (this condition is in our case of statistically
distributed dense point defects fulfilled for magnetic fields not too close to B.,,
where the flux line kernels do not overlap strongly).

The equilibrium condition is then [9]

..I.Q+wk~|f&H.M.MAHIQV.HNNAHI&Y 3)

where the value 1/6 =2K_,/0A is a very important quantity (besides the charac-
terization of the defect parameters K., A, it is a function of the magnetic field, as
o(B)), as we shall see later.
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Zo? gwo turn our attention to the case K, , which means the Suc_m?a-m:nmnmﬁ
combination of the interaction potential. The solutions of Eq. (3) are then

(+)

b—-2="(b*+1-4b—6ba)"”
x= 3 4)

+)

b+2(b*+1+4b —6ba)”

. u )

X, =

Emno. x <0, x,>0, and the “right” sign of the square roots is determined by the
. condition

”llNAerQ”lﬂ.

as for x = — 1 the force on the flux line is zero.

. The n,_,omﬁ jvonma problem is now to find the intervals of the flux lines
natural” positions a, in which the individual solutions x, and x_ are possible.
Thus, e. g. we have _

x.=0 for a=~1/2b=a,,

therefore for x, only the values a > a, have to be considered.
As

0 for b>2
@' —_ 2 — 1/2
x (@)= 2—(b*+1—-4b+3) = 12b—-4
forb<2

3 3

there is a continuous transition between the solutions x, and x_ for 6> 2, but no
more for <2 (see Figs. 3).
We obtain for 4>2

x(+1)=+1,

therefore the flux lines are deformed continuously in the whole interaction range of
the. defect (- A, + A).

For b A.N‘ the range of possible real x_ values is restricted by the condition of the
non-negative term under the square root:

b°+1~4b—~6ba=0,

therefore only the undeformed flux line positions from the interval a e (— 1, 4,) can
lead to real x_ values, where ’

a=(b*+1—14b)/6b.
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At a = a,, we must have (for <2} an “abrupt” change of the flux line position,
because then

b+2—(b*+1+4b—b>—1+4b)"_ b+2-V8b
x (@)= ( 3 - 3 0,

and the earlier position of the lux line was

x_(a)= 25-4 <0
3
(see Fig. 3b, c). Now, for 5 >1 we have a continuous deformation of the flux line
uptoa= +1,as x.(+1)= +1, but for 5 <1 we obtain another abrupt change of
the flux line position, because the flux line is “held” at the defect up to
b’+1+4b—6ba=0,i.e.fora<a,=(b>+1+4b)/6b. The sudden motion of the
deformed part of the flux line (this is now the release of flux line from the defect)

takes place from x,(4,)=(b+2)/3 to x=a,>1 (Fig. 3c, d).

[N

—
= —— —
i e —————

1 ]

o 0 1 -1 0 141 0 1. 40 1 4
Fig. 3. The schematic pictures of the deformation of flux lines (i.e. the positions of one flux line while
moving through the defect) at the combination of repulsive-attractive interaction potentials (dashed
lines in Fig. 1b) for different elementary interaction forces; # =3 (a), 1.5 (b), 0.5 (c), 0.1 (d). The
numbers mean the undeformed coordinates a. The dashed lines are the positions after the sudden
changes of the fiux lines, the dotted lines the positions of the flux lines after reversing the force on the
flux line lattice (see text).
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,_,.:nm.m sudden changes of the flux line deformation cause the so-called hysteretic
losses in type 11 superconductors.

Let the flux lines to be in equilibrium after applying some transport current in the
mc_uo.qnosa:nﬂon (the so-called critical state). We begin now to increase the force
mnv:wa to them (e. g. by applying slowly a small current to the current at which the
::.x lines are in equilibrium). Those flux lines which are deformed continuously are
m.:_:oa slowly to the next equilibrium position, the deformation energy of the flux
lines can cn. relaxed reversibly to the energy of the superconducting electrons (they
have “obtained” the deformation energy from the superconducting electrons).

M. _mm 4. To an:._o:mzwnw the m:maoz changes (dashed lines) of the flux line positions near the defect with
;wﬁn_.:. elementary interaction forces, we have plotted the dependence of the deformed flux_line
positions x on the corresponding “‘natural” positions a for 5 =3 (a), 1.5 (b), 1 (c), 0.8 (d), 0.5 (e),
0.1 (f). ’
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But this is not the case at the abrupt motion of the flux lines, where the processes
are too rapid for this relaxation. The deformation energy changes to heat, the
superconductor has losses. We can see this also from another point of view.

If we apply an additional force in the other direction (e. g., by reversing the
direction of the current), the flux lines after the sudden change can be deformed
continuously, reaching positions in which they were not before (dotted lines in Fig.
3). We have thus irreversible changes of the flux line deformations (and irreversible

effects lead to losses).

X
€A

Fig. 5. The force on the flux lines vs. the flux lines “natural” positions for b =3 (a), 1.5 (b), 1 (c), 0.8
(d), 0.5 (e). From these figures, the appearance of the force asymmetry (resulting in non-zero volume
pinning force) for b <2 is more clear.

To have another picture of the flux line positions near the defect, we have plotted
the coordinates of the flux lines in dependence on the undeformed flux line
positions in Fig. 4. _ ] ] :

We can see the asymmetry of the flux line positions, caused by the defect, also
from the force on the flux lines (Fig. 5).

Knowing the possible intervals of the undeformed flux line positions a (for the
individual solutions x. , x_); we can calculate the volume pinning force on the flux
line lattice. As mentioned above, all positions of a are equally probable, therefore
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F..=N ﬁ‘w_.. 0A*(x — a) da + H 0A*(x —a) QL. (5)

«y

where a=a, a=1 for b>2;
a=a, =1 for 2>p>1;
a=a, o=a, for b<1.

After integrating (5) we obtain

0 for 6>2
64 . 128
?LT%@ +4<M@.sl@uv for 255> 1
g N(K/3)
we N
56 b* 128
?+.MT%%:W+%<M~VSV for b<1.

The R.mc_a are plotted in Fig. 6. Similarly as in the case of the simple attractive and
repulsive intéraction potential, we have a threshold value for 1/b, below which the
defect configuration does not contribute to the volume pinning force. This
threshold is given by the reversible-irreversible change of the flux line position near
the defect, as mentioned above. It is worthwhile to note that this threshold value is
smaller than for the single attractive or repulsive interaction potential (see Fig. 6).
Much more interesting in our case are the deviations from the W._QAU depen-
anao.n. ,;mmo deviations could be possibly explained ,g the fact that at smaller
&mx..E:B Interaction forces both the barrier and the well contribute to the volume
pinning force (and act in the same way, i. e. “both” volume pinning forces are in the
mmS.n direction), whereas at larger maximum elementary interaction forces the
barier dominantly determines the volume pinning force. Therefore, the total
volume pinning force is larger at smaller X, than one would expect Qrm maximum

:._ Fig. 6 for the combined potential is approximately twice the maximum of the
single potential barrier).

IV. THE COMBINATION OF THE
ATTRACTIVE-REPULSIVE POTENTIAL

,E.n.om_n:_m:.osm in the case of the attractive-repulsive potential are analogous to
those in the preceding Section. ,

The flux lines should come to the defect from the left and the defects begin to act’
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on them at x= —1. The flux line position is determined by the equilibrium
equation

:+ukmlf&uIWMMQIQVHINEkIaV. 6)

The solutions of this equation are

—2—b+(b’+1+4b +6ba)"”
Cx_= 3 , (7)

2-b+(b’+.1-4b+6ba)'"”
X = Hw B

where again x_<0, x, >0. The “right” sign of the square roots is now given by the
condition

x==—1/3 o a=-1/3,

as for x= —1/3 we have K=0.
We have again some characteristic cases. For & >2, we obtain solutions of the

Eq. (6) for all x, i. e. x_ for ae(—1, &), x, for ae(a,, +1), with

r(a)=x.(a), a=1/2b. ) ¢

The deformation of the flux lines in
this case is continuous and reversible
(see Fig. 7a).

Fig. 6. The relative volume pinning force f=
=F,/(NKZX/20) in dependence on the maximum 2
elementary interaction force K, (¢=K,/0A).
The “ideal” quadratic F,(K,,) dependence would

give f =1 (independent of g). K, is the maximum
elementary interaction force, with which the de-
fect on the flux lines at large interaction forces
acts. 1 — the repulsive-attractive combination of L

the interaction potentials (dashed lines in Fig. 1b),
2 — the single repulsive interaction potential of

a+
3
-

a barrier (Fig. 1a). %
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Fig. 7. The same mnrn:_wao pictures as in Fig. 3, but for the attractive-repulsive combination of
potentials (full line of Fig. 1b) for b =3 (2), 1.5 (b), 1 (c), 0.1 (d).

One cannot any more combine the solutions x. and X, continuously for
2>b>1, as in this case Egs. (8) are not true.
We have then

*(@)=0, x.(a)=(4-b)3=x

m:a. we obtain no solution for x, in the interval x €(0, x,). The flux ::n at the
position a = a, changes its form abruptly (Fig. 7b), the deformation energy of the
flux line is lost in heat. v

For b < 1, the first sudden change of the flux line deformation isata= —1,asin
this case the force from the defect is already so strong that the nearest possible

coordinate of the deformed flux line is nearer to the defect centre.
Since -

-1 for b>1,
_1+25
3

=2 (B 1-2p)"

x_( 3

for b<l1,

the interval of the impossible real x_ solution is
kmAl_,bY x,=—(1+2b)/3
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and the sudden change of the deformed flux line position is from x = —~ 1 to x = x,
(Fig. 7¢ and 7d).

For b < 1/2, we obtain x_(+ 1) <0 and x, has no solutions in the interval (0, 1)
for @ > 1. The flux line is held on the defect up to the value x_ =0 and springs then
to the coordinate a,=1/2b, as x_(a,)=0 (Fig. 7d). .

In Fig. 7d (as in Fig. 3) we see very illustratively the irreversible effects of the
defects, which contribute to the volume pinning force. By changing the direction of
the applied force on the flux line lattice, the flux line which is just released from the
defect, can be displaced some distance backwards without comig into the interac-
tion range of the defect. Meanwhile, the flux line occupies such positions in which it
was not before — the cause of the irreversible effects, mentioned above.

The sudden changes of the flux line positions and the asymmetry of the force
action (leading to the pinning force) are illustrated also in Figs. 8 and 9, which are
the analogous dependences to the Figs. 4 and 5 for the repulsive-attractive
potential of the preceding Section.

at a=5

T b s Ay

Fig. 8. The same dependence as in Fig. 4, but for the attractive-repulsive combination of the interaction
potentials (full line of Fig. 1b), 5 =3 (a), 1.5 (b), 1 (c), 0.5 (d). 0.1 (e).

W
n



In calculating the volume pinning force on the flux line lattice, we have the
following integrals

m_-u\i \ Ax —a)da+ WE? ~a) i“

1 for 5>1/2

where a,=1/2b and th ”
: M %R=11/26 for b<1/2. |

After integrating we get

0 for b>2
o _NK: 16/27(8b — 126% +65° — b*) for 2>5>1
20 ) 16027(95~ 1567+ 95°— 25" for 1>b>1/2

[1+16/27(b—3b*+35°— b%)]
The results are plotted in Fig. 10.

for 5<1/2.

K_
6A

11

N\,
\

Fig. 9. The same dependence as in Fig. 5, but for the attractiverepulsive combination of the interaction
potentials (full line of Fig. 1b), =3 (a), 1.5 (b), 0.5 (c), 0.1 (d).
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Fig. 10. The volume pinning force in dependence

on the maximum elementary interaction force

(like in Fig. 6), for the attractive-repulsive combi-

nation of the interaction potentials (full lines in

Fig. 1b), noted as (1), and the single (2) attractive

potential (the reverse case of the potential in Fig.
ta).

+ n

. 0 10 20

g

In contradistiction to the results of the previous Section, the attractive-repulsive
combination of the interaction potentials gives a nearly ideal quadratic dependence
of F,(K..), which was not the case for any other forms of the interaction potential
[8—11]. Though the pinning forces from the barrier and the well were additive in
case of the repulsive-attractive combination of the potentials, now the barrier and
the potential well act in the opposite direction (the flux lines are attracted by the
well — the force is to the right, but they are repulsed from the following barrier
— the force is to the left). Therefore, the increase of the volume pinning force at
smaller o_oEQnSQ interaction forces is absent.

V. DISCUSSION

The difference in the F,(K,.) dependence are smeared out at larger elementary
interaction forces, as then the first barrier or well is dominant for the interaction
with the flux lines, respectively. The volume pinning force in case of K_ (i. e.
attractive-repulsive combination — full line in Fig. 1b) is therefore much larger
than in case of K., because the elementary interaction force has the maximum
K =K,, , whereas for K. the corresponding maximum of the barrier is K = K, /3.

The contribution of K_ to. the total volume pinning force (with the same
probability of both cases) is therefore much larger in the case of stronger
elementary interaction forces, and in the limit & — 0 (i.e. very strong interaction
forces), we have F,_=9F,,.

It is just this strong increase of F,, at smaller elementary interaction forces which
is supposed to explain the experimentally observed results for statistically distri-
buted point defects [12] at smaller defect densities. This effect was more pro-
nounced at smaller magnetic fields [12]. This is not surprising, as for larger
magnetic fields the flux line distances are smaller, the interaction between the flux
lines stronger, the flux line distortions therefore smaller. The role of “simple”
potential barriers or wells will then increase to the prejudice of more complicated
interaction potentials (e. g. our combined interaction of more volume elements
with the individual flux lines).
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As stated already in [13], at very small magnetic fields another effect can be
important, since the Ginzburg-Landau parameter x was not much larger than
1/V?2. In such superconductors, the interaction between the neighbouring flux lines
can turn to the attractive one at some flux line distances, and this effect leads to
a further increase of the volume pinning force. ‘

Concluding, we would like to make some comments on the cut-off of small
elementary interaction forces, which are below the threshold value [2]. As
expounded in Sect. II, this effect failed to explain the decrease of the volume
pinning force to zero at magnetic fields smaller than the upper critical magnetic
field of the superconductor [13], although this effect seemed to be a very probable
reason for this decrease. Looking at the form of Fig. 6, we can now understand
a little the reason for this failure. .

The maximum elementary interaction force K.. decreases with the increasing
magnetic field (for all interaction mechanisms defect — flux line). The number of
the cut-off volume elements (i.e. those with the maximum interaction force smaller
than the threshold value, e.g. K,,) will therefore increase with the increasing
magnetic field. At the same time, the number of volume elements increases, which
come closer to the “peak” in the F,(K..) dependence. These elements contribute
more to the total volume pinning force than expected from the pure statistical point
of view. ;

The increased contribution of these elements can compensate to some degree the
contribution of the cut-off volume elements,
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