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ANALYTIC PARAMETRIZATION OF :—QIAMZHzG<
CROSSING EVEN 7*p FORWARD SCATTERING
AMPLITUDE

ANNA NOGOVA*, Bratislava

_.ﬂmnnE results on rising total cross section for the 7 *p scattering are analyzed by the
statistical extrapolation method. The assumed asymptotic behaviour is of the logarithmic
form. The phase shift data and recent high energy measurements of o, and of the ratio of
real to imaginary-part of the amplitude are used as the input. We conclude that the
present data plus analyticity are not sufficient to determine the exact form of the
logarithmic growth of the forward scattering F* amplitude. v
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B pabore dHAMBUPYIOTCA ¢ AOMOLILK) METOMA CTATHCTHYECKO! IKCTPANOAALNK
TOCACAHKE PEIYNBTATEI O BOIPACTAIOUIEM MOTHOM MOREYHOM CEUEHHMHU T*p paccesnus.
Mpeanonaraemoe acumnroTHYeckoe nosenerue uMeer norapudmudeckuint sug. Paso-
wr_(o CABATH # MOCTEIHHE MIMEPEHMN O, NP BBLICOKHX SHEPIUSX M OTHOUICHME |
ACUCTBUTENBHOH K MHUMO# yacTel AMILTUTY]Ib PACCEAHUS HCTIONBLIYIOTCA KAaK BXOJHBIE
RanHbte. [Tpuxoanm K 3akniovennio, 4to AOCTYNHbIC AAHHBIE BMECTE C AHANMTHYHOCTbIO
HE ABARIOTCA ROCTATOUHBIMH AN TOTO, YTOGLI OnNpefennTh TOUYHYIO thopMy norapudmu-
HECKOTO pOCTa aMNMTYARI paccesuus Briepéy F.

L. INTRODUCTION

The effect of the rising tetal cross section was first observed at CERN ISR [1] for
the pp reaction.

Similar observations have recently been made for 7*p and K *p reactions at the
Fermi National Accelerator Laboratory [2]. They show that hadron-nucleon total
Cross sections in most cases decrease at low energies, pass through a minimum and
then all of them start rising at energies p, , 50< P =200 GeV/ec.

The behaviour of the total cross section is related to the sign of the real part of the
m.o:zma scattering amplitude. Namely, if the total cross section grows with energy
like (log E), the real part of the forward amplitude is such that 0=ReF/ImF
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behaves like w/log E. This is the well known result of Khuri and Kinoshita and
follows from general assumptions of the local field theory.

It was recently confirmed by FNAL measurements [3] that o(E) of #*p and K*p
reactions passes through zero at laboratory momenta around 100 GeV/c and
asymptotically approaches zero from above. Any reasonable theoretical model
which explains the rise of the hadron-nucleon total cross section should also give
the correst position of zero of the ratio ¢ = ReF/ImF. This idea. was followed by
Bourrely and Fischer who parametrized the pp, pp [4] and z°p, K*p [5]
forward scattering amplitudes by real analytic functions which are crossing
symmetric and the corresponding total cross sections behave like (log E/E,)". They
obtained a good fit for a large interval of the values y. A remarkable result of their
7*p parametrization was that the zero point of ¢ was almost independent of the
growth rate y. The position of zero stays within narrow limits 52——80 GeV/c of the
laboratory momentum. The present FNAL data give this value around 100 GeV/c.

There are several other works which have the real analyticity and crossing
symmetry as a main assumption. Jakob and Kroll [6] derived certain constraints
on the agymptotic behaviour of the total cross section from dispersion relations. For
crossing even *p amplitude they assumed two types of high energy parametriza-
tion of g,, . The one with an asymptotically constant behaviour and the other with
an In’ (E/E,) term. Although such parametrizations have quite different asympto-
tic limits they both fit present data in a certain energy range. It means that an
asymptotic constant behaviour is not excluded.

We shall not discuss other works which use different dispersion relation
techniques in order to extract some information about high energy behaviour from
the present data. An important result of the recent calculations [7] is that the data
are consistent with the dispersion relations.

In general the analyticity of the scattering amplitude is tested by using “‘or-
dinary” dispersion relations in which the real part is expressed as the principal
value integral of the imaginary part. It means that one predicts the real part of the
amplitude from the knowledge of its imaginary part over the same or larger energy
region. One may ask whether it is not possible to predict the real and imaginary
parts of the amplitude in one energy region if we know both the real and the
imaginary parts of the amplitude in another region. If there were no errors it would
be, of course in principle possible. In this paper we shall consider this question in
a practicularly interesting case. .

In fact we shall investigate whether it is possible to predict the special form of the
high energy behaviour of the scattering amplitudes from the data available at
present. Suppose that the amplitude (both the real and the imaginary parts) is
known below some energy value, say E, and is denoted F,(E). We shall then
specify a form for the amplitude at E > E,,. This form will contain free parameters
{a,, a,, a,, B} so that the amplitude
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m_ﬂm.v for E<E,
F(E)=

F(E, a, a,,a,,) for E>E,.

We shall try to choose the parameters {4,, a,, a,, B} insuch a way that F(E) be an
analytic function in the whole ‘energy plane. The method which we shall use is
based on the Cutkosky statistical approach to the representation of data by analytic
functions. It is described in more detail in [8)].

, H:n present paper is organized as follows. In part II we shall describe very briefly
the :._0509 The summary of the present data on the x*p forward amplitude will
be given in section IIL In the last section we shall present the results. The
derivation of the asymptotic form can be found in the appendix A. In appendix
B we shall clarify the definition of our x.

1. DESCRIPTION OF THE METHOD

The crossing even n*p amplitude F* Amvnwﬁﬁ-%mv+hﬂ%mvv (E is the

laboratory pion energy) has two symmetric cuts (=»; —m,), (m,, ©) and a pair
of poles at E, = tm./2M,.
We know from experiment the real and imaginary parts of that amplitude along

the right-hand cut (m,, @) up to about 150 GeV. Above 150 GeV we shall use
a parametrization of the form ’

w..Am. QO. Q—. QN« mv"mhﬂﬁo+ﬁ_ﬂ—=hlmﬂﬂ\Nvmu+

+ay(1-i) Vs, 6))

s...rono s 1s the c.m.s. energy squared with 4, a,, a,, f real. Such a parametrization
s.:: be tested by a method described in [8]. To apply it for our case, we first map the
right half of the E-plane onto the unit disc using the following conformal mapping

x=(a-V1-E)/(a+VI-E)
where a is a real constant*. We work in units where 7, =h=c =1. Now the upper
and the lower parts of the right-hand cut in the E-plane will be mapped on the
upper and lower parts of the unit circle in the x-plane. The pole E, is mapped onto
X, =x(E,). Instead of the amplitude F(x) we shall consider the function
y(x)=F(x) (x—x,) (x+1)? which is analytic inside the unit circle and has no

no_.m. The factor (x + 1) prevents the function y(x) from diverging at x=—1,
which is the image of E = w, ‘

) * a is arbitrary and the result should be independent of . We have chosen a in such a way that the
high energy part E =(150 GeV, x) was mapped onto the arc @ =(165°, 180°).
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N
According to [8] we can now say that the sum > |y |?, where
1

o dlx|, : (2)

has a chi-squared distribution with N degrees of freedom. g(x) is the Ciulli-Fischer '
[9] weight function constructed in such a way that it is analytic and free of zeros
within the unit disc and, on the boundary, it obeys the condition lg(x)| = £,(x).

€, is the effective error defined as ¢, = £/Va, where ¢ is an experimental error and
o is the density of experimental points.”

The integration in (2) proceeds along the unit circle. In the upper half of the circle
we know the function y(x) from 0° up to 165°. It is an interpolation of the data. (It
corresponds to the region from the threshold up to 150 GeV in the E plane). From
165° up to 180° we use our parametric form y(x, a,, a,, a,, B), which corresponds
to the asymptotic form (1) of the amplitude. Since the function y(x) is real analytic,
integration along the lower part of the circle is trivial.

N
Minimizing y* =X y%, where y, are calculated from (2), we get optimal values of
1

the parameters a,, a,, a,, 8 of our asymptotic form.
We stress once more that we do not fit the last data by our parametrization (1)
but expect such behaviour above the last data point.

. DATA ON F*(E)

Before presenting the results we shall shortly summarize what we know from
experiment about the even 7*p forward amplitude in the energy plane. Since the
data come from different sources we can divide the right-hand cut into three
regions:

1) From the threshold up to the point where the data of the phase shift analysis
start. The amplitude can be calculated in this region by use of the effective range
approximation. Using our conformal mapping with a = 142.07, this region was
mapped onto a very small arc of the unit circle, so that the contribution to yk from
this part was of the order 107 and could be neglected.

2) The region from E=0.17 up to E =2.78 GeV. Here we have used the phase
shift analysis Saclay 72. The amplitude was calculated by a simple interpolation of
data. Since the density of data points is quite large in the x-plane, the linear
interpolation should not distort too much the “true” amplitude.

3) The interval from the last Saclay data point up to 150 GeV. The imaginary
part of F*(E) has been determined from the measurement of the total cross section
[10] via the optical theorem. The real part was calculated from 0=ReF/ImF,
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c.cEn: m.m measured with the help of the Coulomb interference [11]. Here the simple
::wmn Iinterpolation of data may not be quite correct, since the density of data
points, particularly for ReF™, is much lower than in the previous region. On the
other hand this part will be suppressed by the weight function g(x). A more serious
drawback of this region is that the data come from five different sources and they

.Sm% not be quite consistent. This influences the effective error and therefore
increases y°.

IV. THE RESULTS

N N
As shown above, ¥* was defined as a sum X yi, where y,, s are given by (2). N
1

was equal to 1 N\—w% choosing a higher N we could get more reliable results, but on
the other hand with a high N we have problems with the integration of rapidly

omoE.mnzm functions. The results are shown in Table 1. If we leave out the
logarithmic term, i.e. we test the form . .

F(E, ay, @) = iays + ay(1—i) Vs, 3)

we get x*=30.33 and for the coefficients the values a,= — 0.001 1, a,=0.00057.
For the case of the total constant cross section, i.e.

F(E, a0)=iays, 4)

the minimization gives y*=20.56 and a=10"

The difference between the x* values of parametric forms (1) and @) is
surprisingly small, since in the case (4) we have only one free perameter g, in
contrast to (1) where there are three free parameters.

F.S:Q:mmos We can say that so far the data plus analyticity do not give any
convincing results concerning the logarithmic growth of the form of Eq. (1) of the
total cross section and even the constant asymptotic behaviour cannot be excluded.

Table 1
B ao a a; »\
1/4 1.7 —-0.978 2.5 19.40
1/2 0.84 -0.28 2.33 19.39
3/4 0.55 -0.11 2.174 19.37
1 0.4]1 -0.05 2.04 19.35
5/4 0.33 -0.02 1.92 : 19.33
6/4 0.27 -0.011 1.81 19.30
7/4 0.23 —0.006 1.71 19.30

2 0.2 —0.003 1.63 19.25
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APPENDIX A

In this part we shall shortly explain why we have used the parametrization of the
specific form (1). t
We want to fulfil two requirements:

the crossing symmetry F*(s) = F*(~s) (5)
and the real analyticity F**(s)= F"(s*) (6)

‘Strictly speaking the crossing symmetry requires F* (E)=F"(—E), where E is the

laboratory pion energy but asymptotically E ~s/2M and therefore (5) should be
valid too.

Besides conditions (5) and (6) we also require a certain asymptotic behaviour.
Namely, we want the function F(s) to contain three types of terms:

i) One with the asymptotic behaviour ias. (It corresponds to the constant total

cross section).
ii) The term of the type s(log s)*, which represents the logarithmic growth of the

total cross section.
iii) The term representing the Regge behaviour, —aVs.
Condition i) is fulfilled by the function

L(s)=1—ia Vs*—s2,

which has also two symmetric cuts (— o, — %), (50, ®). Similarly, the function
In L(s) fulfils crossing and real analyticity and asymptotically behaves like In s.
Constructing from function L(s) the analytic function F(s) which contains terms

of all three types: i), ii), iii) and then performing the limit s— o, we come to the
form:

F'(s)=is(a+a(ln s —i n/2)°)+(i—1) a,Vs,
where a,, a,, a,, B are real.

APPENDIX B

In the following we shall show that the sum = y2 is consistent with the currently
used definition of ¥°.
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H_hﬁ _,wm start with the simplest example. (What follows is explained in more detail
in [12]).

Let B an.aoﬂm the boundary of a region 9 and let y; and ¢, be the data and the
corresponding errors in measuring the function F(x;) in points x,. The values y: are

understood as the random gaussian distributed variables with the means F(x;) and
the dispersion &, .

.m:vbOmn that y;, .TA.«..V are real. Let @(x) be a real function defined on B. Then
using standard statistical methods it can be shown that the random variable

S=2 yox)e?,

i=1

where N is the number of data points, is gaussian distributed with the mean value

ES)=3 F(x) g(x) &=

and with the variance

D(8)= W £ @°(x).

i=

If the data are dense enough we can rewrite the previous sum into the integral

$= 1 y®)e(x)e(x) [dx], (7)
ir.wno &(x) is a smooth interpolation to &,/V a(x;), where o(x,) is the density of data
M%V_Em around x,. The mean value of the gaussian distributed variable defined by

is :
E(8)= | F(x)p(x)e*(x) |dx]|
B

and the variance is

D(S)= m @*(x)e7(x) |dx].

The previous example can be easily generalized for the case of a complex
function F(x,) with complex values y,. We suppose for simplicity that both the real
and the imaginary parts of ¥: have the same errors.

The previous arguments are valid for both the real and the imaginary compo-
nents of F(x) and of ¥ so that we can say that the variables Q, and Q, defined as

Qr +iQ, = [ y(x)@(x)e(x)
B
ire gaussian distributed.

6

Instead of one function @(x) we can choose a suitable set of functions — @k (x)
and then construct Qy ’s as

O« nm y(x)@x(x) dx. (8)

If F(x) is analytic and @k (x) are suitably normalized, then the real and imaginary
R N
parts of Qx ’s are gaussian, N(0, 1) distributed and hence the sum > |Q«]? is the

usual x* with N degrees of freedom.

So far we have assumed that the data are given along the whole boundary B.
Minimizing x* then we could say whether the data y: are consistent with the
analyticity of the function F(x).

However, in our case there is a part of the boundary with no data — the
asymptotic region. There we have to use a certain hypothesis. In this situation we
can interpret our y* — test as follows : We suppose that in the asymptotic region the

.data follow the curve given by formula (1). Then we ask how are such “data’ plus

data from the region up to 150 GeV consistent with the w:m_v&a@ of the amplitude
in the whole energy plane.
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