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CURRENT DENSITY AND DIFFUSION COEFFICIENT
FOR COSMIC RAY PARTICLES

MILAN STEHLIK,* JURAJ DUBINSKY,* Kosice

The expression of current density for cosmic ray particles scattering in the interplane-
tary turbulent magnetic fields is found in the work. It is shown that the convectional
component of the speed of the current particles does not correspond to the solar wind
velocity, but it is determined by the “drifting” velocity of the charged particles in the
solar wind. A tensor coefficient diffusion is computed in the case of R <L, where Ris
the Larmour radius. The longitudinal spatial diffusion coefficient and the mean free path
are discussed in detail.

TIOTHOCTb TOKA H KOJOOHUMEHT IUOOY3IUN LA YACTHI
B KOCMHYECKHX JIYYAX

B paGote naiineno sbIpaxeHyue QNS MIOTHOCTH TOKA YACTUL B KOCMUYECKUX Jyyax,
KOTODBIC PpACCEMBAIOTCS B MEXINAHETHbIX TYPOYNEHTHBIX MATHHTHBIX [OJISIX.
TTokasaHo, 4TO OOBIYHAS KOMIIOHEHTA CKOPOCTH TOKA YacTHI He COOTBETCTBYET
CKOPOCTH COJIHEHHOTO BETPA, 2 ONPEACNAETCH CKOPOCTBIO APeiica 3aPAKEHHbIX YACTHI[
B conxeyHoM Betpe. Tensopuetit koaddunment nuddysun pacunran s cnyyae R< L,
rae R o6osnadaet paguyc Jlapmopa. [Heransuo obcyxpaioTes  koadpdnuuesT
NPONONLHOM MPOCTPaHCTBEHHOM AMPY3UH M CpeHss AnuHA CBOBORHOTO npobera
vactHy,

I. INTRODUCTION

In the investigation of the scattering process of cosmic ray particles in an
interplanetary irregular magnetic field many authors have been using the ready
diffusion equation, resp. the Fokker—Planck equation. It cannot be doubted that
in the case of many phenomena, where the mean free path of the cosmic ray
particles is larger than the irregularities of the medium [1, 2], the application of a
more general equation — the Boltzman kinetic equation for the mean distribution
function F(r, p, £) — is necessary. This equation has the form [1]:

AW+DV F(r,p,t)=Col F,
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Ly=0vV +M [v—u, H) % , u is the velocity of the solar wind, v, p is the <n~om€
and the momentum of particles, D,, is the tensor of electromagnetic forces ?.Mro
random magnetic field.

This equation provides the exact form of equation of diffusion in the case of the
correct calculation of the diffusion approximation [3]. In the case of the high energy
particles, when the Larmour radius R > L., where L, is the autocorrelation length
of a turbulent magnetic field, Dol ginov and Toptygin [2] determined that the
current density I of particles is h

L=—bkp——ut = 6))

where N(r, p, ¢) is the diffusion tensor, £, signify the concentration of um&.o_am.
If the magnetic field is strong, i.e. R<L, it is necessary to consider a helical
. motion of particles in space. The diffusion approximation provides in this case two
complicated equations. The second — the vector equation has the form [3]

131 Yy 1 mw|.2+P = e SV Do+
var 3N R uk] 33p R (A1) “3pap (kY p:
v ON + D)+
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.TmleH TQES- —IP, —[uh]®, lm (In)o: +W i&b%& ,
where the functions

o, =) Amé%e @Nv (1+cos Qr), | ,”..M

3 c
_{HD) AM.VN cﬂv .
D, =313 %aﬂe AMM sin Qr ,

1= fn 220

3 (1+£cos Q2r),

ﬂ -y .« . - w ~
D, um (P, — D_) arise from the collision integral Col F in a Boltzmann _c:onn.

equation. Those are proportional to the Fourier component of the tensor of the
random magnetic field in accordance with the circle velocity £ = evH,/cp of the
particle in the mean part of magnetic field H,. The function & determines' the
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diagonal components of the tensor random magnetic field. (H,H;)~ Dd,4. The
form of @ is defined empirically. We shall use the following form of & in the

concrete calculation:
x X (v—1)2 x
°(#)=() Kon(F)

whose Fourier component [} is @(k)~ 1/(k3+ k2)*!, k3' = L.. We denote by K.s
the diffusion tensor in distinction from ks in expression (1). The mean free path in
the random magnetic field is denoted by A.

II. CURRENT DENSITY OF PARTICLES

From the diffusion approximation of the kinetic equation for the mean distribu-
tion function we have two equations: for the particle density N(r, p, ¢) and current
density I(r, p, t) [3]. We shall investigate the case of the independence of the
current density of time:

If we define the coordinate system by

_ [un]
" un)]

)

n,= T.uu =L s

from the vector equation of a diffusion approximation, we can obtain the explicit
expression for the particle current density:
. aN aN
L=—xp o —w, 2SS (3)

The first term in the expression describes the pure anisotropic diffusion of the
particles in space, which arise in the presence of the gradient VN. For the diffusion
tensor we obtain:

Xap =Xo ﬁ&nul_wmlo_Qwa_.AQ—;TONvAl-M\}Iv.T Q_QN Fnuu&ul__u—x AA.V

VA \Hﬂ\um + me&%\u.\ +W AONN&“\&Q + O~ zﬁ\nuv +

+ Aonowmmv&\nn + Q_QuQumnsw}nv w }mw .
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The second term, convectional, arises in the particle scattering stochastic
magnetic field, which moves in space with a velocity u. The magnitude w, is not
equal to the solar wind velocity «,, but it is -

1 1
Woity + Q, O K[w@ ov [k +— Qu(uh)h, + (6)

+w Qe oh, (uh)u, +w Q(Buy — ol Yuh)u, |
where

onAiFw@ onv (1+a2+ ] _?s_~o~v-_. (5a)

v
The expression (3) for the current density differs from expression (1) not in the
modified convection term only, but in the different diffusion tensor, too.

HI. CONVECTION COMPONENT OF THE SPEED OF CURRENT

It can be seen that owing to the strong magnetic field the convection term is
proportional w+ u. We can find out there is a difference between these quantities.
From formulae (5, 5a) and the expressions for the functions @ we obtain
complicated expressions with the hypergeometric functions for the coefficients Q,
Q.. In the approximation R <L, the expressions for the coefficients are essentially
simplified and we have

14108 Ly
Q~—2 Y R/ 1Ly (7
Ery o)

Let us consider the most probable values characterizing the interplanetary space :
L=2x10"cm, H=45y, u=~4x10’ cms™, 1.5<v<2, and a proton with the
energy of 1 MeV. From the expressions (7) it follows that the second term in (6)
reaches a value near to u (for an angle between the vector u and A larger than zero,
for v =1.5). For a more energetic particle the term vanishes. When v increases, the
situation becomes complicated, because for v =2 the second term in (6) is much
greater than the first term describing the “drifting” of the particles in a solar wind,
especially those of lower energy. If v=2.5, the deposit of the second term is =~ u,
especially for the energy of particles of 100 MeV. A deposit increases disproportio-
nately especially with the larger value v. In fact, the disproportionate increase is
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scarcely realized, because we see in form @(k) that for large v the particles scatter
mostly in large irregularities, the number of which is sizable. We suppose that in
calculations the irregularities have the size L., although theoretically the size of the
irregularities L= L_ for a value v=2.5. The physical meaning is evident: for high
energy particles and a small v the irregularities are small enough so that the
particles do not interact with them. On the other hand the low energy particles
deviate at a larger angle if v is high. We obtain a reasonable deposit for low energy
particles and a small v. A high v and high energy particles with an indicated
limitation provide a reasonable deposit as well.

While the second term in (6) is necessary to consider in the case of [uh] #0, the
third term is proportional (uk), i.e. when an angle between u, k is near zero. Its
value increases for particles (protons) with an energy of several MeV with the
growth of v, and achieves a value larger then u for v=2 only.

The fourth term in the expression (6) differs from zero for an angle between u, h
near to /4 o=_.<. and achieves a value several percent of u Q% forv=15:15%
for v=2.5). The last term gives a deposit for (uh)#0 and a=1, 2 only. For
(uh)=0.8u the quantity of the last term is equal =0.1u (for v=1.5) and =~ u (for
v=2.5). If v is still increasing, the value is practically constant.

The second and the third terms in (6) describe the convection component of a
current speed along the vector H,. The first and the last term describe a primary

_convection in the direction u ; the fourth term shows a negligible convection up to

u.

Remark

In case of R» L the expressions. for the coefficients (8, 5a) are essentially simplified and the
exponent v dependence of the coefficignts vanishes quite completely. The coefficients Q, Q, are small
in this case and the expression (3) for the density current turns to the expression (1). In this case, the -
change of the particle momentum in-a regular field may be neglected (at the distance ~L ).

IV. DIFFUSION TENSOR
COMPARISON WITH AN EXPERIMENT

We can find the components of the diffusion tensor from the expressions (4), (5).
Let us write the component k, expressing the meaning of the longitudinal diffusion
coefficient (concerning the regular magnetic field):

~ .
=0 (10, 03+ 0,0, [luhF?). B
The coefficients a, &., &, =} (P.— D), P in the case of R <L, acquire the
form > . )

w NQI(!N 5 w

“TVATOR) iy L v
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Fig. 1. A selection of the experimental magnitude
of the radial diffusion coefficient, which describes
the propagation of solar particles in the period
1961—1966 (the magnitude is denoted by circ-
les). The theoretical curves (full curves) describe
the energy dependences of «,,. The treated expe- 5

rimental values are taken over from [4]. w

o e o e

From the expression (5) and (9) we obtain the longitudinal diffusion coefficients

Kit = X33

1

L\~
~ =2 2 (£
Qa-vzpp ﬁu +N v~*{uh) ANV g

Xy =v

Val @AEV T +W v~ (uh) A

The fraction in brackets may be neglected. In Fig.

7]

1 some experimental values

taken over from [4] are compared with the theoretically calculated energy

dependence of x, = x, (E).

It can be seen that the experimental values are straggled near the theoretical

curves for v=1.86 and v=2 (in our approximation). A

scattering of the experi-

mental values may be due to the time change of the exponent v, because the
diffusion tensor is probably most sensitive to the change of v.
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V. RIGIDITY DEPENDENCE OF THE MEAN FREE PATH

The mean path of the particles in a turbulent magnetic field can be calculated
from the components of the diffusion tensor. Let us denote

x:HNNNHW\\r“ (n

v
Hi3 == Ay
3

=3 Awi  @B=1,2,3; a#f;

X12=—X21 .

We substitute the coefficients (9) and (5) for the expressions in (4). Then we obtain
for the mean free path:

-_3.2°"""H§ R
" Var(vi2)(H) L,

A= o () (B) 7R

o () Lo [ L (0,

uNA_-s\NS_?s_ .
A= Var(vi2) (i) v Axv £

3. g bl [}, LUHE (L1 (Lo
A = L
»= 7 [T(vi)P Acﬁvv v 172 Axv H Axv R
and analogically for the longitudinal A, and the transverse A, mean free path:
i 11wl (5]
L~ 2 »* \R

. vaiha (13a)

Ar ; (12)

\rﬂzu\hwclsa H3
al(v/2) .AEV T+Wh@@ A.Wmv;

A= aw:w\wvglﬁmv: Eyfz A.mvm._ (13b)

The quotient H#/(Ht) =5 near the orbit of the Earth. If the second term in
brackets in (13b) is small, the transverse mean free path A, is proportional to
H3>~R? and A, <€Ay (In the strong field H, the low energy particles are
concentrated in the power-tube).
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Let us suppose the existence of the anisotropic current along k. Although in this
case dN/3x, may be (resp. IN/3x, as well) great in the coordinate system (2), the
diffusion currents I, I, are small.

Fig. 2. The quotient R/L, dependence of the

“reduce” mean free path for some magnitude of

the exponent v: The curve a) corresponds to

v=2.5, the curve b) corresponds to v=2, the

curve c) corrésponds to v=1.5. The curve d)
holds for the approximation R> [ _.

10 % v &

<

|

Let us examine the expression (13a) for the mean free path of a particle along
the magnetic field. In our approximation we obtain

(1-vi2 g _
\—\\H..I.Iu 22 20 Awnv -A ATC
Val(v/2) (H) \R
This value is practically equal to the value ,
NNA?+NVHQ<I 1)/2) H3 AWAVTNP , (15)
vIf(vi2Vx  (H) \R

which in Galperin’s, Toptygin’s and Fradkin’s [5] opinions expresses the meaning
of the mean free path of particles in the strong magnetic field. .

In Fig. 2 there is schematically illustrated the quotient R/L. dependence of the
“reduce” longitudinal mean free path. The meaning of this quotient becomes
evident if we write down the quotient in the form

R_(pc)_1
Lo AQV H,L.’

where the term in brackets is the rigidity of particles, which increases proportional-
ly with the momentum p.

We see the lingitudinal mean free path is proportional to p>~", i.e. for v>2 the
mean free path decreases if the particles scatter in the large irregularities of the
magnetic field, whose number (especially for great v) increases.

If v=2, the mean free path A, does not depend on the monumentum ; in case of
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v<2 we see that A, decreases for the high energy of particles (the number of the
small irregularities is greater than for v>2).

The asymptotic momentum dependence of the “reduce” mean free path in case
of R> L. is independent of the exponent v (curve d in Fig. 2). The motion of the
charged particles in the interplanetary space is defined by the rough characteristics
of the interplanetary medium. In Fig. 2 we see that the curves a, b, ¢, d may be
interpolated to the point A (near to R=L,).

The numerical value of A for the particle energy 1 MeV equals 9 x 10" cm (for
v=1.5) and 4Xx 10> cm (for v=2). Let us remark that the quotient Hz/{H¢) is
approximately constant. For example, in the region over the Earth’s orbit, this
presumption has been verified by the measuring of the “Mariner-4"" [6]: If the
distance from the Sun is enlarged from 1 AU to 1.43 AU, the value { H?) decreases
2.4-times and the value H3 decreases 2.5-times. The magnitudes of the values A,,,
A,; are small in comparison with A, ; the magnitudes A,,, A, A, are near to R
and A,,, A,,— 0 for the angle between the vectors u, & near to zero or 7z7/2 ; further
there holds A,; < R. The magnitude A,, tends to zero for |[uk]|—0; if |[uh]| = u,
then A3 =3x31/v<Le.

VL. DISCUSSION

We mentioned in Chapt. I. that many authors begin from the Fokker—Planck
equation in solving the particle propagation in an irregular magnetic field in the
interplanetary space. Klimas A. and Sandri G. have calculated the complicated
expression for the parallel diffusion coefficient and one expanded in a series. The
authors used small parameters 1/¢=P/A,{H), where (H) is the mean field
strength, P is the particle rigidity, A, has the meaning of A /. Let us remark that the
case of 4,(H)> P corresponds to the case of L.> R.

Yy
3

Fig. 3. The quotient P/A,(B) dependence of the

“reduce” mean free path for av=2.5;2; 1.5 [7].

The dashed curves are results of the first, the solid

L L curves are results of the second approximation.
Ty The exponent av corresponds to 2v'in 7).
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The first and the second approximations of the series were calculated by the
authors [7] the resonant and nonresonant interaction particle-fields. The results are
illustrated in Fig. 3, where 5 =the value of the random field/ (H) <1. The dashed
curves are the results of the case where only the resonant interaction was included,
while the solid curves are the result of including both interactions. In this way, the
authors [7] expect that for a very low rigidity (=~ 100 keV) the mean free path will
be independent of rigidity.

We see that the first approximation in [7] is very like the dependences in Fig. 2.,
which are the results of the first (diffusion) approximation of a Boltzmann kinetic
equation. In the first approximation a kinetic equation gives the results identical
with the results obtained by using the method in [7]. The method of our work, in
addition, provides all the components of x.s simultaneously.

In addition the authors in [7] used the power spectra k£~ instead of (16), which
have been used in our work.

The authors want to thank Prof. L. I. Dorman and M. E. Kats for valuable
discussions during the development of this work, and Ing. K. Kudela for helping
to determine suitable experimental values.
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