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MEASUREMENT OF THERMAL QUANTITIES IN SOME
INSULANTS BY THE ULTRASONIC METHOD |

ANTON $TRBA,* VLADIMIR MESAROS,* PAVOL VOJTEK,* Bratislava

This paper refers to the possibilities of using thermal ultrasound methods for
measurements of some acoustic and thermal quantities.

H3MEPEHHE TEPMMYECKHMX BEJIWYIMH
HEKOTOPBIX M3O0/AIHOHHBIX MATEPHAJIOB C NIOMOIbI0 YIBTPA3BYKA

B paGore coofmaercs O BO3MOXHOCTAX HCHONB30OBAHMA TEPMHYECKOTO
yALTPa3BYKOBOFO METOMA [N M3MEPEHUS HEKOTOPBIX AKYCTHYECKMX M TEPMHUECKHUX
BEJIUYHH.

I. INTRODUCTION

Basic thermal ultrasonic methods using for measurements of basic ultraacoustic
quantities heat energy, which accompanies the ultrasound propagation in some
solids with a relatively high absorption coefficient, are described in [1]. We can use
the thermal ultrasonic method not only for measurements of basic ultraacoustic
quantities but for measurements of some thermal quantities as well.

II. HEAT-FLOW EQUATION AND ITS SOLUTION

The basis of all methods dealing with measurements of thermal quantities is the
knowledge of the temperature distribution in a sample. We can find the temperatu-
re distribution by applying definite conditions and by the solution of the heat-flow
equation [2].

vo 3T =div [A grad T+ F(x, y, 2,1, (1)
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where y is the specific heat, ¢ the density, A the thermal conductivity, T the
temperature and F(x, Y, Z, 1) is the density of the heat sources determining the
amount of heat generated in a unit volume per unit of time. When a substance is

homogeneous and isotropic, then y, 0 and 4 are constants and Rel, (1) may be
written in the following form

oT
3 =TAT+f(x,y, 2,0, )

where a’*=A/yg and fx, y, z, )= F(x, Y, 2, 8)/vo. When a sample is not
heat-isolated from its environment we have to take into account the heat drained

off by the environment in equation (2). Then we can write for the density of the
heat source 2]

F(x,y,2,00=F(x,y, z, )~ (T~ T) (3)
and Eq. (2) may be written in the form
%ﬂ @AT—€eT+f(x,y, z, t), 4

where a is the coefficient characterising the transfer of heat from the area
delimiting a unit volume (@ is connected with the heat transfer coefficient a, for the
cylindrical sample of a radius 7, with the relation ay=r0a/2), where T, is the
temperature of environment, T temperature of the sample, e=a/yp and
hxy, 2, 00=F(x, y, z, 1)/ Yo+ T(x,y, z,1). |

The different methods of solution of the differential Eq. (4) in some concrete

where T and f, are only the functions of the variable X and time ¢, !
When we want to solve Eq. (5) we have to find the concrete form of the function

4mx

\A\ﬁcul+wnom!l, (6)

A
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where A and B are quantities depending especially on the d_anrwioam_. UMMMMMMMN
i i length of the ultrasound in s
material of the sample and A is the wave ! : .
MM the initial and the boundary conditions be given according to (6) in the form

T(x,00=T,, T(0,0=T,, T{)=T,. )

Equation (5) complemented by conditions (7) will be solved by a.nmi:m :M
?:oﬁoz v{x, t), which expresses the deviation from some known function U(x,

for which there is adopted [3]
T(x, )=U(x, )+ v(x, t). t3))]

By introducing this into Eq. (5) for v(x, ¢) we get the equation

& 2T ev=fix, 1), )
where
f, n=1x, 0 (35 - wacv . (10)
If we choose the function U(x, ¢) in Eo.‘mo::
Ux,0)=T,,

the solution of equation (5) is transferred into the solution of equation (9) with

ero boundary conditions. . . .
? Since the function (6) is periodical and even, we can find the solution of th

function (9) in the form of the Fourier series

wCP )= MSAD oom%. (11)

If we distribute the function f(x, ¢) into series

flx,n)= M.m nom.mwm (12)
where
=2 [ e noos™E ae (13)

and the assumed solution (11) is substituted into equation (9), we obtain the
condition for the solution of equation Gv in the form

ﬁ%lf?%%?& v.() = f()=0 (14)
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and from that

@)= [ F(@etomrenio-ogy 1s)
0
Thus for the solution of Eq. (9) we can write
v(x, )= M % el ele=nf (1) cog |=.W.Ian:. . (16)
n=0 Jo

From comparison of (6) and (12) it follows that the relation (16) may be written in
the form

vix, )= h ﬁ\» €7 4 B g l@maiARreli-n) coo m\wal\«w dr. a7

When Eq. (17) is integrated and ¢ substituted on the basis of the boundary
. conditions we have

T(x, 0)=To+ \w&@ (1 — e-cararon) 4 (18)
Q :
B
+ AA.I.NQ'&VN +|Ah “H - lebﬁ.h\\»vn.'.abﬂxkg:-w Ccos % .
A dyo

In the case of the steady state, i.e. f— o for the surface temperature distribution
along the sample, we obtain

Adyo B 4mx

4a +AA.§V~ 4a A - (19)

T(x)=T,+

A

‘;.o .83_:5 (19) is important because it connects T(x, t) and the heat transfer
coefficient. Let us compare this result with the temperature distribution in the case
of the sample being heat isolated from its environment. Then we can write [6]

A2 4nx
T(x, 1)= e =
(x, )= At+B A fsv cos 22, (20)
The first term of Eq. (19) is determined by the temperature of the environment and
does not appear in relation (20) because in the process of derivation we assume
that the environmental temperature is zero. The second term in Rel. (19)
corresponds to the first term in Rel. (20). While for the heat isolated sample this

term expresses a uniform increase of temperature in time along the whole sample, .

in the case of heat transfer into the environment this term acquires in the steady
state a time independent value. The third term in.Rel. (19) corresponds to the
second term in Rel. (20), while both these terms have the same period. Owing to
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this fact the environment has no influence on the position. of peaks of the surface
temperature along the sample.

III. MEASUREMENT OF THERMAL QUANTITIES

The methods of thermophysical quantity measurements are well described in [7].
The basis of all these methods is the knowledge of the surface temperature
distribution in the sample depending mainly on the effect and shape of the heat
source. There is no known case in which the energy of the mechanical waves
absorbed in the sample through which it propagates is the source of heat: We shall
point out the possibilities resulting from relations (19) and (20) which we have
arrived at.

Assuming the drain of heat into the environment we have to start from relation
(19). Only the third term of the sum on the right-hand side of this relation is
important for the following consideration:

B 4nx
T(x)= % cos —=, (19a)
A dyo

where the meaning of all quantities is clear from what has already been mentioned.
If we plot the functional dependence T(x) determined by equation (18) for the
third term of the sum and for the temperature maximum (Fig. 1), we obtain the
curve asymptotically approaching the value
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‘ Fig. 1. Relation Wo%oan temperature N.s:.a mam ~. at the temperature maximum.
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We are able to measure the temperature T, directly and we can determine the
wavelength of the uitrasound, e.g. by the method described in [5], but there are
three unknown quantities B, a and ¢ in €quation (21).

The quantity B is determined by the relatively complicated relation [5] and its
solution is not easy, but we can solve it graphically. As the derivative of the third
term of the sum on the right-hand side of Rel. (18) at the point (0.0) equals B, the
tangent of the function (18) at this point (0.0) has the equation T= B, This
tangent crosses the asymptote T= T, at the point (4, . T,) and it is obvious that

1
:lAEvN+IA.W 22)
A dyo

from which we have for ¢ and A

auﬁ%ﬁm»QW%@wg (23)
= (5 (%) 09

We can substitute the determination of B by the determination of the time t,, which
can be measured directly. When we measure the time dependence of temperature
at the temperature maximum on the sample surface T(r) and determine the
temperature 7, the tangent at the point (0.0) crosses the straight line T= 7, at the
point (¢, . T).

To exclude one of the two Tremaining unknown quantities ¢ and 2 in relations
(23) and (24), respectively, we have to be satisfied with a certain approximation.
The value of the term (47a/A)? is for common materials as much as 100 times
smaller than the value of the term 4a/dyp. With regard to that we can neglect the
first term of the sum in the denominator of Rel. (22) and instead of the relation
(23) we obtain

_dre
=, (25)

If the sample with stationary ultrasound waves is heat isolated from its
environment along the axis of the sample, we can write [6]
= AN — e—G@rarnyy dnx
T(x, )= Ar+ B A esv [1—e cos 22X (26)

N

If this function is derived with respect to time at the temperature maximum, we

obtain (for x = X,)
0T, /3atr=A+B @7
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Fig. 2. Determination of time ¢,.
and thus the tangent at zero point has the equation
T=(A+B):. (28)
In a steady state
B(-AY (29)
Tai(xo, )= At + e .

from which 37,,/3¢= A, hence the asymptote has the equation

AN . 30)
T=Ar+B A&sv . (

Solving the system of equations (28) and (30) we obtain for the time t, (Figure 2)

:nA A v~ G1)

4na

and from that there follows for the 902:& conductivity

_orA? (2)

A= 1672, "
From this we can see that the thermal ultrasound methods enable to B.omm_.:m
both the heat drain coefficient and the thermal conductivity. For the determination -
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Fig. 3. Block diagram of the experimental
M — magnetostrictive transducer; HR — half wave resonator; H — horn; SP — spring; TT —

thermistor thermomet ;S

device. UG — ultrasonic generator ; FM — frequency meter ;

—sample ; R — reflector; C,, C,, C, — acoustic couplers.

of both these quantities it is €nough to known the time dependence of temperature
at the temperature maximum ont

by construction from this time de
relations (25) and (32), respect

he sample surface. The time ¢, can be determined

.Uo:ﬁo:no and from the value ¢, and on the basis of
ively, both quantities mentioned above.

IV. EXPERIMENTAL RESULTS

ﬂ:.o possibility to .Eowmcno some thermal quantities by ultrasonic methods was
verified on the experimental device in Fig. 3. The measurement was done at room

temperature.
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Fig. 4. Relation between temperature 7 and time ¢ for slowly moving air and different acoustic outputs
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(W, <W,<W,).

The investigated sample was in the shape of a cylinder with the diameter of 5 mm
and its length was several tens of centimetres. The sample was long enough so that
the keeping of the boundary conditions had practically no effect on the magnitude
of heat maxima inside the sample. There was a reflector R at the one end of the
sample securing the generation of stationary waves. As a source of ultrasund a
magnetostrictive transducer M with the resonance frequency of 16.8 kHz was used
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Fig. 5. Relation between temperature T and time ¢ for quicker moving air and two acoustic outputs
’ . (W,<W,).

and feeded by an ultrasonic generator UG (VUMA-UG-250). The transducer M
was complemented by the half wave resonator and catenoidal horn H with the
amplification factor 10.6. With regard to lowering the acoustic energy losses on
junctions the individual components were silversoldered together. For a better
connection with the ultrasonic horn H the sample was pressed to it by the spring SP.

The surface temperature was measured by a thermistor thermometer consisting
of the thermistor 14NR15 and a ‘measuring device. The thermistor was in
non-current mode.

First the heat transfer coefficient for the air at the temperature of the environ-
ment 7,=25 °C was determined. As a standard an oak wood cylinder was used.
The parameter ¢, = (74 £4) s was determined from the temperature time depen-
dence at the temperature peak for slowly moving air (Figure 4). To this value of the
t, there corresponds the heat transfer coefficient a,=23.3 Jm~2K-’s! (computed
per area unit with the relation a,= ad/4 — for the cylindrical sample). For more
rapidly moving air (propelled by a small air compressor), for which the time
dependence is in Fig. 5, we have @, =101.6 Jm2K~'s~". The obtained values are in
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Fig. 6. Wn_mco: between temperature 7 and =Bo ¢ at the temperature maximum for a sample made of

oak wood and an output W,.
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Fig. 7. Relation between temperature T and time £ at the temperature maximum for a sample made
of texgumoid for different acoustic outputs (W > W5 > W, > W,),
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agreement with those described, e.g. in [2], where the heat transfer coefficient for
moving air is within the range from 23 to 120 Jm2K~'s™". Figures 6 and 7 present
the time dependence on temperature in maxima for samples made of oak wood and
texgumoid in very slowly moving air. For oak wood we obtain after determining ¢,
the value of the thermal conductivity 4=0.21 WK™'m™~', which is in good
agreement with the value in [7]. A 10 % deviation can easily be explained by the
difference in temperature between the heat transfer coefficient measurement
(25 °C) and the temperature of the environment during the measurement of the
thermal conductivity (28 °C).

We do not mention the results for texgumoid because we cannot compare them
with the table values.

V. CONCLUSION

The measurement of some thermal quantities by the ultrasound methdds
mentioned in this paper means a further extension of thermal ultrasound methods,
which were primarily used only for the measurement of basic ultraacoustic
quantities [1]. We can not use this method for arbitrary materials, only for those
with a relatively great absorption coefficient, which has as a consequence the rise of
a sufficient thermal energy. That is why plastics are very suitable. We believe that a
wider application of thermal ultrasonic methods makes a definite contribution to
the measurement methods for the investigation of the properties of solids and that
the thermal ultrasonic methods can help not only in the course of the oacnm:onm_
process at the university but i in practic as well.
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