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ON THE THEORY OF BOUND STATES
IN A RANDOM POTENTIAL

MILAN OZVOLD,* Bratislava

An approximate method is discussed for the calculation of the energy-level density of
low-lying bound states in a random potential. Such states occur in regions of
well-separated deep potential wells. The method utilizes the prognosis for the wells in the
framework of the correlation theory. The method is suitable for the states localized in a
region much smaller than the correlation length of the random potential. The presented
method is compared with the theory of Halperin and Lax. The computed mean
potential energies of particles in the localized states are in good agreement with the
results of Halperin and Lax.

K TEOPHH CBAZAHHBIX COCTOSHHMA B CIYYAMHOM NOTEHHMAJE

B cratbe o6GCykmaeTcd UPUOIMXKEHHBIA METON MNA BBIYHCICHUS [UIOTHOCTH
IHCPrETHYECKMX YDOBHEH HM3KOMEXANWX CBA3AHHBIX COCTOSHMA B CIy4YailHOM
noresumane. TaxkMe COCTOSHMA CYyWECTBYWT B TOH 0OGnacTH, Trie rayBoxue
MOTEHUMANLHOE SMbI HAXOAATCA HA GOJNLIUOM PAacCTOAHMH APYr OT Apyra. Metox
HCHOJIb3YET MPEACKA3aHUA IS MOTCHUMAALHBLIX SIM, MOMYYECHHbIE B PaMKaxX TEOPHH
KOppensAuyH. PasBuBaeMbIik METOJI MPUMEHMM IS COCTOSIHUA, KOTOPBIE JTOKAJIH30BAHbI
8 06NIACTH, HAMHOTO MEHBILIEH, YeM KOPPENSLMUOHHAS [IMHA CNy4aiHOro MOTEeHLHANa.
H3anaraemsiit MeTOR cpapuuBaeTcs ¢ Teopue# Iansnepuna u JIakca, ¥ pacCiMTaHHbBIE
CPERHME MOTECHIMAILHBIE SHEPTHH YaCTHL B JIOKANHM3OBAHHBIX COCTOSHUAX HAXOMATCS B
XOpOIUEM COTTIACHH C ITOH TEOpHEM.

1. INTRODUCTION

Halperin and Lax (HL) [1] presented an approximate method for calculating
the density of states o(E) in the low-energy tail of an electron band of a
semiconductor, in the presence of a high density of impurities. In the framework of
the effective scalar mass approximation the hamiltonian of the problem is
H= — A2m — V(r)+ E,, where m is the electron (or hole) effective mass and the
constant energy E, is chosen such that { V) =0 (the angular brackets indicate an

average over the ensemble of impurity positions). Under certain assumptions the’
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random potential V(r) obeys the Gaussian statistics with the autocorrelation
function [1, 2].

(Vv =Ewdr-rh=E e (-I2771), M

where the mean square fluctuation & is proportional to the concentration of
impurities and to the square of the strength of the individual impurities and to the
square of the strength of the individual impurities and where the function
W(|r— r']) depends only on the shapes of the impurity potentials. Eq. (1) presents
the case of screened Coulomb impurity potentials, thus the correlation length L is
identical with the screening length.

The region of energy with a small density of states is called the low energy tail.
An energy E will be in the low-energy tail if E,— E >0 is lagre compared to the
energy easily obtainable from the potential fluctuations, i.e. if Qw,elmv)\wv 1.
Thus the states in the low-energy tail are bound in wells in the random potential,
arising from large fluctuations in the local density of impurities.

If the energy E is deep enough in the tail, then the probability of a potential
fluctuation capable to produce an excited state at E will be quite small and in the
calculation of o(E) the presence of the excited states can be neglected.

The crucial assumption used by HL was that all the eigenstates f(r), at a given
energy E in the tail, have the same shape, or equivalently, that all the correspon-
ding’ potential wells have the same shape. This approximation leads to an
overestimate-of the energy of each eigenstate and an underestimate of the density
of states in the tail, where the density of states is rapidly falling. Thus the best
choice of f, for any given energy E, is that which maximizes o,(E). The application
of the variational calculus leads to the equation for f of the form [1]
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with an ‘“‘average” or “‘optimal” potential well given by

Vo(r)=—u [ W(r=r)f(r)dr, (3)

where g is a Lagrange multiplier which is determined by the condition [ P(r)dr=
=1.

States in the low-energy tail will generally be highly localized in a region of low
potential and the function f must be rapidly decreasing when its argument becomes
large. Assume that the characteristic size A of f is much smaller than the correlation
length L. Then for the potential V, with |r — ro| >4, where the vector r, gives the
centre of the potential well, it follows:

Vo(r)= —uW(r—ro)= —p exp An_.mw|a_v : )
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Efros [2] compared this analytical expression with the results of the HL's
numerical computation. Both these functions differ at the centre of the potential
well. However, at the centre of the potential well the probability of finding the
electron is small and this difference can be unimportant in the quantummechanical
average.

In this paper we wish to point out that the potential shape given by Eq. (4) is just
the shape which can be predicted in the framework of the correlation theory and to
show how this prediction can be utilized for the calculation of p(E). We have also
presented some calculations with the autocorrelation function given by (1) and the
results are compared with those computed by HL. Namely, we have computed the
mean potential energy of a localized particle.

II. PROGNOSIS FOR THE POTENTIAL WELL

In the framework of the correlation theory the best prognosis (or extrapolation)
for a homogeneous random function V{(r), if we know its value at a point r,, is
(3, 4]

V()= V(r)W(r—r,) . &)

Indeed, if the function W in Eq. (5) is identical with the correlation function W
defined by Eq. (1), then the mean square fluctuation of V{(r) from its prediction (5)
is minimum and there holds

((V(r) = V(r) W(r — r))*) = (VD)) (1 - Wi(r—r,)) . 6)

This expression and therefore also the probability (Chebyshev’s inequality) that
V(r) differs from the value given by the prediction (5), will be small as long as W is
near to unity, i.e. as long as |{r—r,| <L. Now, it is clear that the prognosis (5) is
suitable for the localized states with A < L. The prognosis (5) for a given energy E
gives all the potential wells of the same shape and therefore it supports the central
assumption made by HL.
If we now solve the Schrédinger equation for the ground state with the potential
“of the shape (5), we shall obtain a condition saying what the value of the potential
V(r.) has to be, in order that the ground-state energy may equal E. This condition
generally does not give an isolated point r, but surfaces on which V(r,) has the
required value. It is natural to choose this point so that the approximation may be
improved. Therefore we require for the first approximation of the perturbation
calculus to have the minimum value, that is for the expression

{([V(r) W(r—ro) — V(r)] fe(r—r5) dr)? 9l

to be minimum if V(r,) corresponds to the ground state f:(r) with the energy E.
This requires for the “smoothed” potential
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J V(Nfe(r—r) dr (8)

to be a minimum as a function of r,. This is, however, an equivalent requirement
with that made by HL in oaon to find the position of large negative fluctuations of
wells in V(r).

The present treatment differs from that given by HL only in Ea choice of the
function f, therefore the formal expression for the density of states (Eqs. (3, 5) and
(3, 23) of HL) remains unchanged and it can be used in this case as well. We have
mentioned above that the best choice of f is that which maximizes g,(E), hence our
approach is less correct than that of HL. However, as long as E is deep in the tail,
the prognosis (5) has the high probability and the difference is expected to be small.
The advantage of the present method is its simplicity and possibility to perform
some calculations analytically. Further, since the prognosis (5) does not depend on
the distribution function of the potential, it can also be used for non-Gaussian
distributions.

III. RESULTS
For the potential well of the shape (5) with the autocorrelation function (1) the

Schrédinger equation has the exact solution for the ground state [S]. This solution
is (with r,=0)

S(ry=Vaxr f(r)=CJ,(e™), ©)

where J, is the Bessel function of the order p and

2 2
Bay=(B-E) >0 (10)
2 2
E-y u|<3|9~5h >0.
The energy of the ground state is given by the first root of the equation
J.(8)=0. aan
The normalization constant C can be expressed as follows [7]:
Am 2
~Fn(B) 5 (12)

For large values of p for the first root of Eq. on the asymptotical expression is
known [6] from which it follows for the potential depth v (below we use the units
L=1and W¥/2mL*=1): o
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o= AH 4 1.169055 +o.N:oooo _0.0010075 _

0.014347 = 0.004444 2
- + = s ) 3 (13)
3 3
Wy vWy?

To compare our results with those obtained by HL we computed the mean value of
.:.n potential energy of the particle in the ground state. This quantity was chosen as
it has an analytical (asymptotical) expression and as it dominantly determines the

Table 1

logv v v u“ |4 Vi

3.00 : 1000 1256.65 1354 1080.38 1065.60
2.75 562.3 740.61 810 617.41 606.79
2.5 316.2 ©440.59 491.3 354.04 346.49
2.25 177.8 265.00 302.1 203.82 198.40
2.00 100 161.51 188.6 117.93 114.00
1.75 56.2 99.87 120.2 68.57 65.73
1.50 31.6 62.88 78.4 40.17 38.11
1.25 17.78 40.42 525 23.73 - 22.24
1.00 10 26.58 36.2 14.15 13.03

exponent of the exponential factor of o(E) in the tail [1]. The mean potential
energy is given by

V= - thol.ﬂ?v dr=-v A%vl . (14)

In Table 1 are given the values v and V for large values of the energy v and they
are compared with the mean values of the potential energies Vi, computed by HL
and with the values of the Lagrange multiplier u. This multiplier cannot be
considered to be identical with the depth of the potential well, it will be, however,
very close to v for the states deep in the tail, i.e. for v—s . As it can be seen the
agreement is very good.
The function $(r) has the maximum for r' = given by [6]

B ; R_.uﬁcuﬂl. (15)

p +0.808618 Vp Vv

Tmax =2 In
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The prognosis (5), as we have mentioned above, can be considered a good one, as
long as the particle is localized in the region of a size much smaller than the
correlation length. This requires 7,,, <1 or equivalently

Vs 1. . © (16)

This will be satisfied only in the tail. If we define the size of the function $(r) from
its exponent on the large distance, S(r) ~e~""2, then instead of ( 10) we shall obtain
that Vv 1. This is however, fulfilled in the tail if Eq. (16) holds. Reasonably well
the size of the wave function can be identified with the classically allowed region,
i.e. one can define A as r for which v = ve~"2, From this it follows for a large v

1= 2.34 . a7)

3

Vv

Thus, the criterion (16) has to be roughly twice stronger. If we consider this
criterion, then the results given in Tab. 1 can be considered as reliable only for very

large values of v (roughly for v>100) and in this region the agreement with the
results of HL is really very good.

Efros [2] used for the size of the wave function an expression differing from (17) © -

only by the numerical factor and showed that this expression can be successfully

used for the computation of the relative positions of the maxima of the wave
functions. This is evident comparing the formulae (17) and (15).
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