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~THE RHO POLE PARAMETERS
JURAJ BOHACIK,* Bratislava

The application of the analytic extrapolation method for testing the hypothesis of two
complex conjugate poles on the second sheet of a 7z P-partial wave amplitude is studied.
Numerical values of the pole parameters depend to some extent on the set of phase shifts
used in the analysis. The hypothesis of two conjugate poles on the second sheet in the 77
P-wave has high confidence levels for all data sets used.

The resulting values of the pole parameters are in the energy regions M:
753—770 MeV, I/2: 71—83 MeV.

HAPAMETPHI NIOMOCA ¢-PE3OHAHCA

M3ydaeTcs BOIMOXHOCTE HCHIONL3OBAHNS METONA AHATHTHYECKOTO IPOROIXEHUS A5t
TIPOBEPKU THIOTE32 O CYLIECTBOBAHHA [BYX KOMILIEKCHO-CONPSKERHBIX MOMIOCOR Ha
BTOPOM  NUCTE MapUMANLHOA aMmnMTYNBi ZzP paccessus. UMCIOBHIE 3naveHus
TIapaMETPOB NOMKOC 3ABHCAT B HEKOTOPOI CTeNenu OT HabOpa CABHIOB ¢a3, koTopbie
HCTIOB3YIOTCA B ananuse. [MnoTesa o NBYX CONPAXERHBIX NOMIOCAX HA BTOPOM JHCTE B
ZAP-BONHE MMEET GOMBUIYIO CTENEHb HOCTOBEPHOCTH JUIR BCEro HaGopa HCTIONAB3yeMbIX
HaHHBIX. ’

ToinyucHuble 3naueHms napaMeTpoR NOMIOCA HAXONATCA B oGRacTm IHepruii;
M~753—770 Mas, I'/2~71—83 Mas.

L. INTRODUCTION

Recently several papers have appeared dealing with resonance pole positions on
the second sheet of &z partial wave amplitudes (p.w.a). For experimental data they
use the modern 2z p.w.a. analyses [4, 12]. Usually the Breit—Wigner formulas
modified by some model assumptions plus smooth background terms are used for
fitting the data in certain energy intervals around the resonance. In this paper we
shall present the results obtained by a method based on the analytical properties of
the amplitude. This method gives by using the Cauchy integral directly the pole
position. In order to test how the method works in the 7w case, we confine

/ s
ourselves to the rhomeson pole position.
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t

he .w.nomozon o.m a resonance pole (poles) on the second sheet? (ii) if yes what is th

bosition of this pole (poles) in the complex s-plane? We shall assume that Eo
e

rho-resonance can be described by two complex conjugate poles on the seconq -

Il. THE METHOD
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Let us suppose that we have conformally mapped the second sheet of p.w.a. in

the w-EE..n 4:8 the EE disc in the z-plane. Let F(z) be a function holomorphic

M“ Hn ::.: a._mn. belonging to the Hilbert space 3 of quadratic integrable functions

¢ € unit n_ao_n” hm.ﬂ Y(z) and £(z) be smooth interpolations of data and weighted
Irors on the unit circle lz[=1. The unnormalized probality in % is

P(F)~exp {~1x3}, (1)

where

2o 1 L IF@) - Y(2)) )
Ze5d o L e

¢ is the unit circle lz]=1.

<<m~ can Sﬁnﬁaﬁ. the probability P(F) as follows: We shall suppose that the
wsm ytical umouo:a% of F(z) are known,. Eq. (1) gives the probability distribution’
or Emﬂonm experimental outcomes, represented by ¥(z). We introduce  the’
s.@mE function 9(2), which is meromorphic and free of zeros in [z| <1. On the unit'
circle [z[=1 we have . .i

l9(2)| ~e(z) ‘@,
: £(z)=|4,|(2ng,)-1 B
here 4, are the experimenta CIrors; o, the density of data points around z; z the

mapped /-th data points from the s-plane. We can define o
214 -

f2)=F(z)/9(z) 3)
¥(2)=Y(2)/g(z)

the meromorphic functions in the unit disc. Now we expand (3) into the Laurent
series. When we assume that F(z) has two complex conjugate poles, we can write :

y(2)= MFN‘.. %)
Inserting (4, m,v into (1) we get: .
aqu.s Re(ai™?) - T_N+Ma€, =) (6)
here we define
O,mfuw nM\l%N.._S_.. ™)

Using the real analyticity of p.w.a. we shall suppose that Q,, 4,, y, are real.
Assuming that F(z) is really determined by data according to (6) we see that the
quantity

N+m

2. 10, ~2 Re(al" )7
myy
has a chi-squared distribution with N-5 degrees of freedom [11].

The method cannot tell us unambiguously what kind of singularities the p.w.a.
possesses. It gives answers of the same kind as any statistical hypotheses testing
would give. We thus can learn whether a given type of singularity is consistent with
the data but not whether this is a unique solution. The method which we shall use
here is free of ambiguities connected with the resonance-background separation.

We shall test the hypothesis about two complex conjugate poles on the second
sheet in the ax P-p.w.a. Using the data and assumptions about low- and
Emr-ganmw behaviour of the p.w.a., we shall construct the p.w.a. on the first sheet
in the physical region (s=44?) in the following way.

1) We use the simplest expansion for the phase shift in the region between the
physical threshold and the first data point:

8(s)=alg™* + Bg***+ Cq»+s ®

here /=1; a; is the scattering length; ¢ the 7 momentum in cms.
The scattering length parameters were taken from the low energy calculations by
the Roy equation [6, 8]. We find the coefficients .B, C from the requirement
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3(s) =4, i=1,2;

’

0, is the experimental phase shift in the i-th data point; 5, — cms total energy

Square for the i-th data point,

2) We use the linear interpolation of the nieghbourhood 8., m, in the region
where we have the data.

3) In the high energy region, where due to unitarity the following formula is valid
1
fi(s)| <s—
LR

we shall use:

()= Aits.) Qm%. $>8

Smax 18 the highest data point. )
Now on the first sheet for s<s,_, the p.w.a. is given by

: _n(s) e*5(s)—1
\57.’/53 : 9

Y(s)=f1an(g N/.\N?,v
Y{(s) has two cuts (~;0)and (447; ») on the second sheet. The mapping of the
.moomzn_ sheet onto the unit disc is done in two steps.
i) First we transform the s-plane into the v-plane ;

s —~2u? '
- (1n

ii) .monou&u: We map the v-plane with two cuts (— oo ; = 4*) and (u2; ®) onto the
unit disc in the Z-plane:

v=

_1-Vi-yVity
=T (12)

The situation in the z-plane is shown in Fig. 1.
Now we can compute the Q, coefficients using relation (7). We shall neglect the

this circle. The construction of g(z) is described in the appendix. The number N is
the characteristic value of 9(z). The values of g(z) are higher on the left half circle
when N increases.

Z-plane
S=o00+
4 !
s 0 s=4u?
Fig. 1. Transformation of the s-plane onto the
unit disc in the z-plane; 1 — image of the upper
bank of the right-hand cut in the s-plane; 2 — 3 2
image of the lower bank of this cut; 3 — image of
the lower bank of the left-hand cut; 4 — image of S= -

the upper bank of this cut.

Because the integrand in (7) is a real analytic function, we can rewrite (7) as:

H n/2

lf Ss, 3
%=z, Relgdw}iaal. -

In (13) the amplitude on the left half circle was approximated by zero.
The pole position is determined by minimizing the quantity

N+m

=Y |Q.-2 Re(ai" 1)z - (14)

n=m+1

At the preliminary stage it is possible to estimate the pole position by using the
equations :
Q...=2 Re(al"*""") i=0,1,2,3. (15)
Putting A = 4, +iA, we have .
4=3(Q0i Q02— QO NG, - Q,Q,.,) (16)
2] =(Q22~ 001 Qu)(Q2 - 0,0,.0) .

We shall use the pole positions computed by (16) for various n for the estimate of
the errors of 4, and 4, (i.e. the mass and the halfwidth of the resonance — pole
position) computed by (14), and for the discussion of the method used.
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II. TESTING THE METHOD BY USING THE EXAMPLE OF A pPw.A.
WITH A RESONANCE ON THE SECOND SHEET . &

second sheet is constructed by writing the p.w.a. in terms of suitably Parametrized
Jost functions [3]. For the zx case we define:

SCk) = F(k)IF(- k) a7
k)= (k= a~ib)(k +a—ib) .

For the p.w.a. on the first sheet we shall put

S(k)~1
Fs) =300 (18)
k(s)=1vVs ~4u
q(s)=k(s).

The function k(s) possesses in the s-plane the analytic property:
k(s)=— k*(s*) .

F(s) is a real analytic function in the s-plane. The corresponding branch on the
second sheet FY(s) has two complex conjugated poles at Sz and sg;

Sk mh_+_..,.~HA.=~+AQNI@~V+&§ . (19)

The parameters of the Jost functions ¢ and » are fixed by the following
requirement : ' ;

Se =(M, +i I'/2)? ns
M, =750 MeV .
2= 55Mev .

The phase shift of F(s) is

6(s)=arctg A%ﬂvv ;

The Scattering length-like parameter from (21) is:

26
@+ b

- @ty

al =

experimental errors of the phase shift analyses used. The pole positions of the Jost
function will be determined by using (16). The results are in the Figs. 2, 3, 4. The
pole positions found by the method described agree well with the true pole position
of F(s). The real part of the pole position { =mass) is determined better than the
imaginary part ( =halfwidth). It is probably due to the neglecting of contributions
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Fig. 2. The results of the trial example. Fig. 3. The results of the trial example.
Protopopescu et al. [4]; the energies data po- Estabrooks et al. [5]; the energies data points
intsare used. - are used for the elastic case only.

from the left part of the unit circle |z| =1, as a very small part of the data region on
the unit circle. In Tab. 1 there are arguments of complex points z(s,) and Z(Sp)
for the data analyses used. When the N for the weight function is increased, the
neglecting of the left-part of the unit circle contribution is more reasonable. The
significance of the data area is increased in this way, but the errors from this region
Play a more important role too. It seems therefore that it is necessary to make a
Compromise between suppressing Y(z) on the left part of the circle |z] =1 and the
Mumerical integration of the oscillating function as well as the increasing role of the
Uncertdinties in the p.w.a. data. '
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Table 1

Arguments of the first and the last energy point transformed on the |z/=1 circle for the data sets Eaa

Data analysis @(s1) [deg] Psmax) [deg)
Protopopescu et al. [4]. 81.438 88.250 g
.mﬁucnoo_a et al. [5] elast.
data only 76.111 87.508
all data '
without
lowes energies 82.709 88.766

IV. RESULTS

The weight functions, which work well for the trial examples were used for the
P-p.w.a. of the zx data [4, 5]. We emphasize the statistical feature of our results
concerning the type of singularity on the second sheet.
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Fig. 4. The results of the trial example.
Estabrooks et al. [5]; the energies data points
are used, both elastic and nonelastic, excluding
the data points for energies lower than 590 MeV.
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Fig. 5. Pole position using the SDPI data E_m
relation (16). When the distance between’the
points with the distinct scattering length is lower
than 0.1 MeV, we draw only the point with al=

0.036. ;

We used two data sets from the analysis by Protopopescu et al. [4]. The first
data set (here denoted as SDPI) is in Tab. VI [4], denoted there as “case 1”’. The
second data set (SDPII) was obtained from the first one by replacing the higher
energy data by the data of Tab. XIII [4]. The two data sets are both model and
extrapolation mode dependent. The results obtained by Eq.(16) are in the
Figs. 5, 6. We suppose that the increase of /2 with an increasing n could indicate
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Fig. 7. The results using the Estabrooks et al.
[5] elastic data.

Fig. 6. Pole position using the SDPII data.

some systematic error of the data. Using (14) we obtain results which are
summarized in Tab. 2. The errors in M and I'/2 are chosen with regard to
Figs. 5, 6. The confidence level is interpreted as the probability of rejecting the
Tfeasonable hypothesis [11]. Two different values of scattering are used.
Pennington and Protopopescu [6] refer to the value a!=0.036. This values
Was obtained by usung the Roy equations and data [4] used here. As the other
value a} =0.0431 we take the higher and very different value from Basdevant et
al. [8]. In Figs. 5, 6 we see that our results are not very sensitive to the different
values of the scattering length in the interval 9<n <35.

In Fig. 7, there are the results obtained by using the elastic data of the P-p.w.a.
analysis of Estabrooks et al. [5]. Here is used the scattering length {9] 4! =0.038.
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Table 2

Data M[MeV) 172 [MeV] x2 confidence level pumber of used Q
coefficients
SDP 1 755.6F10 83 ¥10 0.01 0.95 27
MU“WGE . 753.7+10 82t10 0.003 0.97 27
stabrooks 769.7+10 71.6+10 .
o, 0.03 0.9 27

The values of Mo, I'/2 have a considerable dispersion in this case. Petersen [9]
showed that data [5] are inconsistent for low energies (<600 MeV). We suppose

: ¢ data for energies lower than
590 MeV are not taken into account. In Tab. 2 there are results obtained by Eq.

(14) for this case. Data [5] are model dependent, too.

€ - plane

Si

R -/ /. Sem——

Fig. 9. Transformation of the s-plane onto the

unit disc in the &-plane; 5, — images of the

experimental data points or the (s,, s =0, o) sig-
nificant points from the s-plane,

A’

Fig. 8. Results using the Estabrooks et al, [5]
both the elastic and the non-elastic data excluding
lower than 590 Mev energy data points.
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V. DISCUSSION

The method used here for the determination of rho-meson pole parameters does
not give the unambiguous answer about the type of singularity on the second sheet
of the p.w.a. It enables us to examine the consistency between the data and the
supposed type of singularity. The important parameter is the confidence level (see
Tab. 2). We see that the hypotheses of two complex conjugate poles on the second
sheet of the P-p.w.a. have a high confidence level for all the data sets used. The
pole positions are different for the different data sets, It seems to the author that it
is due to the model dependence of the zx phase shift analyses used.

When we compute the Q, with a high n, we meet the problem of integration of
highly oscillating functions. It is therefore reasonable to use only a limited number
of Q, coefficients.

The parameters of the rho meson pole are in good agreement with the results of
the other authors (see Tab. 3). We believe that better results would be obtained by
taking into account the contribution from the left part of the unit circle.

Table 3

Comparison of our results and results of other authors. The numbers in squared brackets are reference
numbers. Our results are in the columns denoted as SDPI, SDPIL, and ,,Estabrooks et al.*

Estabrooks

S (51 o [z

SDP I SDP I

M[MeV] 755.6+£10 753%10° 769.7t10  755+4 722 +0.6 7572 778+2
72 [MeV] 83 *10 82+10 71.6+10 80£5  71.55+0.55 81%2 761

The numerical calculations were made in the Institute of Computer Sciences of
the Comenius University, Mlynsk4 dolina. .
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APPENDIX

We construct the weight functions by the method due to F. Elvek jaer [7]. We
transform the complex s-plane onto the unit disc in the &-plane as follows :
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= —s+const. (A.1)
vV =4/(t,— 1) (A.2)
ml~l<~lc<ﬁ+e

ST e, (A.3)

HEM :.mzm».oﬂ%mv:oc transforms the point s =const. into the point £=1, the point
§ =(const. - 24)) into the point &= —1. The point s= j di
. 5 pomnt s = is transf
o f gy stormed into the
In the £-plane we define the polynomial

Wi, =Saen (A4)

n=0

We require that Wg, fulfil the condition :

[Wal'#0, &<
The function W& possesses in the s-plane the cut in the interval se(const:

const—24). In the other part of th i
: € s-plane the real a i
decreasing function, " W s @ real and

Let us put
9(s)=[wg]. (A5)

We determine the values of the i
parameters “const.”, “¢,” and “g 7 ; i
.A>.~l>.$ as follows, ’ 7 in fhe rlations
__,vo c.<n Tequire to suppress the high, low energy data region as the left hand cut
SWMM in M:M .TEm:.o. We put the const. =5, (i.. the square of the total energy in
cond data point), 2¢, = (s=4u?+ £(5,e.) (€. the images of the s-channel

w - S Qmﬁm 1n
mu~.~ m:nm— :: 0m-°~a N:Q the —m t Mvo t are on ﬂ_uﬂ ﬂomm axis in H:O unit Qumn _m _ = H

18407 = |§(s,)l < 1) .

M_.v ,;:o theory of Eono..u_oain functions enables us to construct the polynomial
1.€. the analytical function in the complex plane), which approximates a continu-

Qcm.mﬁw T@Hu Hw—nm curve QO@M not h—
~<—Q : om — X
ac w TV ¢ the Ci Hv o} ﬂummﬂn into Hso Q—muo=.—~

We require that

l9(s)=14,1/V2n , (A.6)
224

here

Az, (A7)

_ [3f%s)
=55 | A0+

9f'(s)
A, 3

f*— p.w.a. on the second sheet ; AJ,, An, — experimental errors of the phase shift
and elasticity, respectively ; o, — the density of the data points on the unit circle in
the z-plane around z, (see [2, 3]).

The data points are in the £-plane on the upper part of unit circle |£]=1. The
&-plane is not divided by this curve. We can fulfil (A.6) using (A.5) and (A.4) with
an arbitrary accuracy. Due to the model dependence of the phase shift analyses
used, we use in (A.5) only one term of the polynomial (A.4). We have

lanEeh=|A|V2n g, (A.8)

We use the relation (A.8) for determining the weight function.
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