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DIFFUSION APPROXIMATION OF THE KINETIC
EQUATION FOR THE COSMIC RAY PARTICLES
DISTRIBUTION FUNCTION

MILAN STEHLIK*, JURAJ DUBINSKY*, Kosice

The charged particle Propagation in an irregular magnetic field is investigated. There
was used the kinetic equation for the mean particle distribution function in an ensemble
of random magnetic fields. The interaction of particles with a random magnetic field is
specified by the collision integral and the correlation tensor of a random magnetic field,
There is calculated the diffusion approximation of the kinetic equation in case of the
particle propagation in a strong magnetic field of the interplanetary space, i.e. the
particles are specified by helical motion in space.

L INTRODUCTION

In the past few years the kinetic equation for the distribution function has been
used more and more. It is the consequence of the fact that anisotropic currents of
cosmic ray particles with the mean free path~1 A.U. are being observed. It cannot
c.o doubted that the ordinary diffusion theory cannot be used in such case and the
kinetic investigation of processes in interplanetary space is necessary. The diffusion
approximation of the kinetic €quation for the mean distribution function presents
the correct diffusion equation as well as the exact formulae for the diffusion process
coefficients depending on the parameters of the medium.

Dolginov, Toptygin [1] carried aut the diffusion approximation of the kinetic
omcwmo: (given in [1], too). The authors give the expression for the flux of
:_m:-mgoﬁw particles, for which the Larmour radius R>L,, where L_ is the
auto-correlation length of a turbulent magnetic field, i.e. the momentum of the
particle is corstant in a regular magnetic field of the. size L

The same authors carried out in 1968 [2] the diffusion approximation in the case
of a strong regular magnetic field, however, only the components of the diffusion
tensor of the particle in space changed.

In this work there is presented the exact process of the diffusion approximation
.om the kinetic equation for the mean ‘distribution function of the particle in an
interplanetary magnetic field.
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II. THE KINETIC EQUATION
In interplanetary space there exist random, turbulent magnetic fields with the
background regular field:
H(r, )=H(r)+ H(r, 1), (1)

where H(r, ¢) is the full magnetic field, H,(r) its regular components.
Turbulent fields are frozen into the plasma of the solar wind, mooving with the

velocity u. Therefore, in interplanetary space the induction electric field — P (u, H]

acts on the charged particles, too. The resulting electromagnetic force is:

__um? aTM_: H], (2)

where v = c’p/e(p) is the velocity of the particle, £(p) = ¢ Vp*+m’c? its energy.
For a random component of force, which acts on the particle we obtain from (1)
and (2):

:.HM?I.F H\|. 3)

The interaction between particles of cosmic rays can be neglected, therefore we use
the kinetic equation for the mean distribution function (in ensemble random
fields): )

w —
( mm;._v F(r.p.t)=Col F. (4)
where we have
m..uefm?;.: ' (5)
3
L, lwlhﬂ
wW=0v—u.

The collision integral Col F represents the interaction particle-field and has by [3]
the form:

8 . + _ .
Q_MMaaF.a-;.bi A‘ Nq s —r—ut;p, Sv L,F(r, p, 1). (6)

It is necessary to write r,=r and p, =p after the operator e ™" has acted on a
certain function. i
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HL TENSOR OF RANDOM FIELDS

In a general case a tensor of random fields p,(x) is determined by the relation
D5 22) = <pta(x) pia (). M

The square brackets are used to indicate the averaging over an ensemble of
realizations of random magnetic fields. Substituting (3) in to (7) gives the
expression for the correlation tensor of turbulent magnetic fields:

Bu(®,; )= (Hou(x)) Hu(x,)). | @®)

We assume that turbulent fields are statistically isotropic and ao@o:a;os_w on
X=X, ~X,. We leave the argument r = 3 (x, + x,) as well, because the dependence
B, (r, x) from argument r describes low changes of B,, when we move from one
turbulent cloud to another. In the case of a statistically isotropic field, we can write:

- o (oo ()

.

x/L,

#(E) )L [ vy

0

The function ¥ is generally determined empirically. According to the majority
of experimental results it is necessary for the function ¥ to have such a form that
the spectral density of the energy of the magnetic field may have a power
dependence on the wave vector. Frequently, the following form of the ¥ function

is used:
x x \tv—12 X
)= ()™ Ko £) (10

whose Fourier-component is [4]:

><

Y=t oy an
v
wilX

ae "G) o

32 pa-1 <l~v
4L} A )

and for v the inequality 1<v=<3.8 holds.
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IV. EQUATIONS OF THE DIFFUSION APPROXIMATION

The collision integral (6) is reduced to the form:

Q:qn \ 3@2-? maAtm:, : :TSV En?sc, (13)
[

where
9

ap,”

: €

D, = pr (14)
For the following calculations it is necessary to explain how the operator e-Lor
influences the function. The mono-a term in L, is in fact Ap %M. and is the cause of
the change of the momentum.in a strong regular field. We shall assume the field H,
to be homogeneous in a cloud. of the dimension L, .

The momentum P of the particle in the field H,is:

P(t)=h(ph)—[[ph]h] cos Qt + [ph] sin 27, (15)
where

Nﬁg. ;.

Q= ; h=—.

p H,

The expression for the radius vector R(t) is analogous. We write
V=exp (— Lot} w=——p (16)
= —Lyt} w= -u.
AR T7S)

The process of the diffusion approximation means that the distribution function
F(r, p, t) is expanded in a series of spherical functions, and only the terms / =0,1
are taken into account (see also [1]):

-1 3p w
Fr.p. =5 (N p. 0+ 2250, p, ), a7)
where the functions N(r, p, ¢) and J(r, p, 1) signify the concentration and the

current density of the particles and depend on p = |p| only. Since in the magnetic
field p = P holds, the collision integral (13), using (15—17), is:

Col MH% AMVN EapyWs ww \aﬁ B (r, w, 1) x (18)
4
3 _1 ON_ 3 (pdd uloxA |e[~v 1
% A% [VIL /] [uP], Amb +§ AW mhv vp? 1 2c? P)))q.
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Since the dependence of the tensor B, (r, x) on the first argument, which
describes low changes of the intensity of turbulent fluctuations when passing from
one turbulant range to another, is m\zmrr we have used in the expression (18) an
approximation ;

r+r,

2

e L NEA s, h—r—ut) — Ba(r, w, 1), (19)

where w,, = h(vh)—u. :
The non-diagonal components of the tensor, proportionate to ¥,, give a small
deposit, and we obtain:

Col wumm (F(r)) @N By mN w dr ._A.Mﬂv x (20)
Rt (83 (r2)- 5 (- ).

If we integrate the Eq. (4) with the collision integral (20) over an angle space
with the polar axis along the vector P, the equation may split into two equations for
the functions N(r, p, £) and J(r, P, t). Because u/v is a small parameter, we
expand the collision integral in series [5]. We obtain the following equation for the
density particles:

ON o, 1 aJ N ) =
S, v I~ (k] ?%i?m:vu @1)
3N 19N 1
=8 3p2 +(b+2a) m@ﬁﬂké + h(uh)k +[uh]l) +
+w wlm (um + h(uh)n +[uh]o),
where the coefficients are as follows:

a=1 (¥, —(uhy ¥.), o (22)
b= (W +(un)®) ¥,,
9=V, +2V,_,

h=—-Y_+2@ -y |
I=5-p)¥.-20-p) ¥.+ ¥,,
m=Y¥,,
n=-y_,
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o=¥ +2¥W_,

W, = wimmv (1 +cos @), (23)

vT\ .
V= EAPV sin Qr,

v = N».A.va sin Qr cos Qt,

w1 = fyy QF@WT/L) (1£cos Q21),
ov

ﬁnﬂwl“ Q1 m\lm.v sin Qt,

¥ = %WM Qr mv sin? Qr,

v, n.%m Qr MWV sin Qr cos Qr ;

T...=4 (Hi(r)) @?«

In the expansion of the collision integral we neglect higher order derivates. The
second equation is:

184 v L P3N 1
cm~+um3a2 N?Sumv N_F:I
__UON _ _, (uh) ,w
=355 T?S W_—ut,+ [ub] -0 g ) (24)

_
+m=|~ TQS €.|.~ﬁi§§|m§v§+m£§ ﬁw.
In the case of the current density being independent of time, the latter equation
gives an explicit expression for J with the help of the gradient density N and the
energy spectrum IN/3p: ) .
ON_ . P3N

Jo=—Kog 2 —

“3xs “33p° (25)

The diffusion tensor «,, depends on both the parameters of medium and the
momentum of the particle, which holds also for w at “drift” velocity.
The expression (25) may be used for determining some quantities difficult to
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measure, for example VN. In case of low energies of the particles, with the
Larmour radius R < L., direct measurements in interplanetary space are evidently
necessary.

Apart from that, in the process of the calculation of expression (25) we can

obtain explicit expressions for the components of the diffusion tensor K.s and the
mean free paths.
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