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EFFECTS OF INERTIA OF THE MEASURING APPARATUS
AND THE FINITE PULSE-TIME IN MEASUREMENTS
OF THERMAL DIFFUSIVITY BY THE FLASH METHOD

LORAND CESNAK®*, Bratislava

The present paper discusses the effect of inertia of the measuring apparatus
acting simultaneously with the finite pusle time effect for the case of the first
order transfer characteristic and the exponential pulse shape. The results of
the analysis are also useful for separate treatment of these effects and allow
to judge their influence upon the accuracy of the thermal diffusivity meas-
urement. It will ke shown that the above mentioned effects are to some
extent additive, allowing thus the construcion of a simple relation for thermal
diffusivity.

L. INTRODUCTION

The flash method of the thermal diffusivity measurement, first proposed
by Parker et al. [1], has been worked out considerable detail. It concerns
mainly the judgement of the influence of some distrurbing factors such as
heat losses, finite pulse duration, ete., which are analysed separately. The
review paper [2] summarizes the already treated effects and points to
effect of inertia of the measuring apparatus and the temperature dependence.
The aim of this paper is to examine the effect of inertia of the measuring appa-
ratus together with the finite pulse-time effect.

In contrast to other pulse techniques, the flash method uses noncontact
and noninertial heat source and samples of finite dimensions. The principle
of this method is as follows (see Fig. 1): a pulse source of radiant energy 1
irradiates the front surface of the sample 2. Part of this energy is absorbed
in a thin surface layer and is converted into heat, which is diffused through
the sample. The resulting temperature history on the rear surface is picked
up by a thermocouple and recorded by a measuring apparatus. The experimental
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Fig. 1. Schematic plot of the flash method.

1o heat losses from surfaces. Then the temperatur

of the sample is given by the equation [1]): ® Historysathe bk suface

T() = Tu(l 4 2 :M —(1)m exp (—n2m2t/9), (1)
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through vt mmou ed by unit of surface area. This may be expressed

nongh | e dependent pulse heat flow q(f). In the case of the instanta-
Puise g(t) = qod(t), where d(t) is the Dirac celta function, we have

9o = % gdt = ws@&&&. @)

Th
o MWAHMMMH memwpw\wwﬂ.m MWmm MM.Q ¢ the specific heat, o the density, L the sample
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el s g S Titusivins eristic time of heat diffusion in the sample
The thermal diffusivity j ; i
. : Y is determined from (1), when T'(t) = ¢
time #1/5, when this ratio is reached, is determined by the mmmwﬁoa T The

ti2 = 0.1388 Lefk. 3)

Il. GENERAL SOLUTION

Let us examine the finite

ulse i ; .
measuring apparatus. Do o effect and the effect of inertia of the

Let us assume that we know the analytic form of the
€ total amount of the heat absorbed by unit of area is

e of the instantaneous pul
o . pulse go = g(¢)dt. Then the tempe-
féresponse on the rear surface is obtained by the evaluation of the mzammmw
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where T'(t') is given by (1).
The further solution of this problem may be easily carried out by use of the
Laplace transform. Since the transform of 7'(t) is

QL\ k

2 )/psinh |/po %)

T(p) =
then the transform of Duhamels integral (4) is
e (6)

The effect of inertia of the measuring apparatus is easy to solve if we know
the transfer characteristic of the measuring apparatus’

A(p) = ua(p)ua(p), (7

where us(p) and wi(p) afe Laplace transforms of the output and input signals.
The input signal from the ideal temperature sensor is proportional to the
temperature 7'1(¢), so that wi(p) = KT1(p), where K is the sensitivity of the
sensor. Then, with the use of (7), the output signal has the form

KA(p(p) [k
1 |/p sinh | po
and this is already the final solution of our problem.

If the heat pulse is instantaneous, then ¢(p) = ¢o and the response of the

measuring device is

wa(p) = (®)

KA(p)go |k

A mmm:r @\y ) ®)

us(p) =
Comparing (9) with (6) it may be seen that the effect of inertia is the same as
the finite pulse-time effect if A(p) = g(p). On the other hand, the solution of
(8) gives also the solution of the finite pulse-time effect with g,(p) = KA(p)q(p),

or of the effect of inertia if the transfer characteristic has the form 4,(p) =

= Kqod(p)e(p)-
For a quantitative analysis we must know the analytical form of the transfer

characteristic 4(p) and the pulse shape g(p). It is common to characterize
the measuring apparatus by a simple transfer characteristic of the first order

in the form
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which is a good approximation to a xenon flash lamp

In our case we shall e i
Xamine the exponenti i i
1. The analytical form of this pulse mmw e pulse ith the timo constant

9() = (go/z1) oxp (—t/r,) (11)
and its Laplace transform . ,
V(]
2(p) = :
(@ + ;') i
Then the transform of the output signal is
KA,T &
wn(p) = —— Vo

P L
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The olma.wﬂ of this may be found by the inverse formula,
1
Up(l) = —
®) P \ €xP (p)ua(p)dp = 3 Res fertus(p)), (14)

wh i
HWMMM Ewm womﬂzw shall be computed for the poles of the function enty, (p)
e w%,om are: simple poles p = ¢, P2 =171", p = 7;" and the infinite SEM%W.
— X : :
mple poles p, = liﬁ&%. After evaluation and rearranging we obtain

i2(8) = uapr {1 + 2y p, (—1)= Oxp (—n’a%/d)

p— (1 — n222)(ys — nx?) +

4 ) Vo exp (—yet/d) Vrs exp (—yut/d)
Y2 — 7 sin w Yz - “sin w\g\lu
LWH.@ Usm = K AgTyr and Yi2 = &ft15.
t us now examine some special
! special cases. If
Pparatus is noninertial, Eq. (15) yields 70 hat means that the

(15)
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and we obtain the temperature response of the exponential pulse. If ri - 0y
the pulse is instantaneous and the output signal from the recording: deviee
with the time constant 7, is the same as in the foregoing case, only y; is to be

substituted by y,.
A further case is the transfer characteristic in the form

Ao(p) = A(p)e(p) = Aogoftita(p -+ 1)) + 7.1,

that is a second order transfer characteristic with the time constants r; and 2.
The response of the measuring apparatus to the instantaneous pulse is then
given by (15). If 71 = 72 = v, We have the case of the proper second order

transfer characteristic and (15) reduces to

“ Imm:v
§:H~+§&.MAIS= @N@As\apl
Usm Ym — n2n?

(1%

n=1

¥m ©XP (—ymt/D) — —

_ L ——= (L + 2yudf0 + |[ym cotg [/ym). (18)

2 sin ﬁ\yg ot -

If the inertia of the measuring apparatus can be neglected and for the

transform of the pulse g,(p) = Ay(p) is valid, then the results of the analysis
are the same. The time depencence of this pulse expressed analytically is

golt) = —2— [exp (—tfvz) — exp (—tm)]. (19)
T2 — T1 3 »
For 1y =19 =t
alt) = m|° t exp (—tftn), (20)

which is the case already analysed by Larson and Koyama [5]. The result
of their analysis is Eq. (18).

III. RESULTS

In this section the results of the numerical analyses of Egs. (15), (16), (18)
and (19) are given. For simplicity, we introduce new variables

T =1 + 12, 2 = 773 (21)

Then for the chosen values z and y = d/r and the ratio us(ty/9)jusy = 0.5,
the corresponding values of « = #;/2/ were found. Since @ is not an experimen-
tal quantity, they were transformed into a new value t/fi2 = {ay)~?, which can
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be determined experimentally. The thermal diffusivity is then found from the
relation
L2
k=g

tyz  0.1388

kia = firkiq, (22)

Je =11 — 1.04¢/t,,). (23)

The time constant 71 and 13 can be determined from the mathematical

analysis of Eq. ( 19). This has a maximum at the time ¢,

2 . Inz zlnz

nzz=r = - .

sl =1 (-1 =4
This equation contains two
these, we express Eq. (19) i

«S”ﬂm

unknown variables 2z and 7. In order to determine
n the nondimensional form

o ,AeAiHF‘S Fol =

Qoltm) = z—1
and this relation is depicted in Fig. 2.
Comparing the experimental pulse curve,

with Fig. 2, the value of 2 can be found.
from (24), knowing t,.

Anvﬁlaiul# r == «.\«E

plotted in the nondimensional form,
The time constants are easily found

Fig. 2. Nondimensional pulse shape as a function of the parameter z = 7y/r,,

6

Table 1

The correction factor fx for the coupled finite pulse-time effect and the effect of inertia
of the recording apparatus as functions of the nondimensional parameters z and v/t

Tft1fe z=1 2 5 10 0
0.00 1.000 1.000 1.000 1.000 1.000
0.05 1.055 1.055 1.055 1.055 1.055
0.10 1.115 1.115 1.115 1.115 1.115
0.15 1.19 1.19 1.19 1.19 1.19
0.20 1.27 1.27 1.27 1.27 1.27
0.25 1.36 1.36 1.36 1.36 1.36
0.30 1.46 1.46 1.45 1.45 1.45
0.35 1.58 1.575 1.56 1.55 1.545
0.40 1.71 1.70 1.68 1.66 1.645
0.45 1.86 1.84 1.80 1.78 1.755
0.50 2.02 2.00 1.94 1.91 1.785
0.55 2.20 2.18 2.10 2.05 2.00
0.60 2.42 2.39 2.26 2.20 2.14
0.65 2.67 2.62 2.45 2.37 2.30
0.70 2.96 2.90 2.67 2.56 2.47
0.75 3.31 3.21 2.92 2.78 2.66
0.80 3.76 3.60 3.20 3.04 2.87
0.85 4.27 4.09 3.55 3.32 3.11
0.90 5.00 4.73 3.99 3.67 3.40
0,95 6.01 5.58 4.51 4.09 3.73
1.00 7.63 6.90 5.21 4.62 4.13

IV. DISCUSSION

The proposed method of analysis of the simultaneous influence of the finite
pulse-time and of the inertia of the measuring apparatus has been worked out
for general pulse shape and transfer characteristic of the apparatus. This
method can be successfuly used if we know the analytical expression of the
function, which approximates the heat source pulse or transfer response of
the recording apparatus. The results of this analysis are also valuable, when
dealing with these effects individually.

The quantitative analysis of this problem enables to set the condition,
when the disturbing factor can be neglected. Thus in our case it may be seen
from Eq. (23) that for an acouracy of the thermal diffusivity measurement
better than 1 9, the condition Tfty2 < 0.01 must be fulfilled. Let us remark
that the correction relation (23) expresses the indpencence of the considered
distrurbing factors for small values of 7,/fy5 and Tafty2. Then

1 1 1

k= Tifts =
.\. kJk 1 — H.Op.ﬁw\?\m 1 — _.OP‘S\?\N 1 — w.opd\ntw




where f{* and fi* are the correction factors for the finite pulse-time effect or
of the effect of inertia.

The possibility of a quantitative evaluation of these effects allows to use the
flash method for shorter time £, and brings a number of advantages: a smaller
influence of heat losses, a lower amount of energy needed for heating the
sample and the possibility of measuring samples with a higher diffusivity.

The author is indebted to RNDr. J. Duréek for his valuable, helpful and
stimulating comments and discussions.
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