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EXPERIMENTAL AND THEORETICAL LEVEL DENSITIES:

ANDRZEJ MARCINKOWSKI*, Warsaw

First, we shall discuss different methods for experimental determination
of level densities which are based mostly on analytical level density formulae.
In the second part, more refined, microscopic approaches to level densities
will be described.

I. INTRODUCTION

Measurements of the nuclear level density provide information about the
structure of highly excited nuclei and allow us to understand and analyze
the decay of the compound nuclei formed in complex nuclear reactions.

II. EXPERIMENTAL AND THEORETICAL ASPECTS OF THE PROBLEM

Most of the experimental data concerning level densities have been obtained
using indirect methods based on theoretical, analytical expressions for nuclear
level density. Traditionally the equidistant model in which the single particle
levels are equally spaced and nondegenerate has been in the evaluation and
analysis of experimental data. The density of levels of a given spin value I of
a system of independent fermions with an equidistant single particle level
spectrum is given by the known Bethe formula [1, 2]
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In erm.moizc_@m a, 6%, U, t and A are the Fermi-gas level density parameter,
the spin cut-off parameter, the excitation energy, the thermodynamic tem-
perature and the energy shift Parameter, respectively.

The constant temperature level density
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where ¢ is the nuclear temperature, has also been often used in the analysis
of experimental data mainly because of its simplicity.

The most extensive information about the level densities has been obtained
by mo:ss.bm the resolved slow neutron resonances corresponding to a narrow
excitation energy range near the neutron binding energy. In this way the
mwmwm.gmm level spacing for almost 200 nuclei have been determined [3]. Com-
pilations of the a parameter values obtained from neutron resonance data,
mwqummm [4, 5] show that a increases with the mass number 4 of the nucleus
Emm A4/8 with marked deviations from the smooth trend especially in the
vicinity of closed shells.

Similar information may be obtained from the charged particle capture
resonances as well as from the fine structure resonances of the analogue states,
studied by means of the proton elastic scattering [6, 7]. In all such measure-
ments one always worries whether the resonances observed are truly repre-
sentative of the total level density, because the nuclear structure may introduce
fluctuations of the number of levels observed and this may in turn lead to
a sizable error,

The level density parameters have for a long time been also determine
wHwE particle evaporation spectra. Usualy the spectra have been analysed
with the approximate Weisskopf expression

e(U) = const’ exp A (4)

L(ep) dey = const eyo(ep)oo(U) des, (5)

%Eor relates the spectral intensity of the evaporated particles I (eb) with the
E%Q,m.m cross section o(ep) and the energy & of the emitted particle. Sub-
stituting into Eq. (5) the state density (2) one can determine the g parameter
from the slope of the quantity In {I(e) (U + ¢t — A)[eyo(ep)} as a function
of (U — 4)12, Here # is the power determining the energy dependence of the
preexponential term of the level density. It is equal to 5/4 for the state density
given by Eq. (2). The evaporation spectra have been analysed in the literature
with different » values ranging from 0 to 2.
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The inclusion of angular momentum effects in compound nucleus reactions
leads to an exact angular and energy dependent differential cross given by the
Blatt and Biedenharn formula [8]
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The quantities I,, i5, J, I and i, are the spins of the target, the projectile,
the compound nucleus, the residual nucleus and the emitted particle, respec-
tively; Sz and 8 are the entrance and the exit channel spins; I, and [, are
the orbital angular momenta of the projectile and the emitted particle, respec-
tively; K, is the wave number of the projectile; P (cos 0) is the Legendre
polynomial; T, T, are the transmission coefficients and ¢, & the channel
energies of the projectile and the emitted particle, respectively. Z,, Z), are
the Z-coefficients expressed by the Racah and Clebsch-Gordan coefficients.
The fit of the theoretical spectra calculated with the help of Egs. (6—8)
to the experimental evaporation spectra provides more accurate level density
parameters. The theoretical spectra obtained from such a fit were analysed
by Lu et al. [9] with the use of the conventional slope method. This analysis
demonstrates the degree of variation of a values obtained from the slope method
with the different factors contained in Eq. (5). It has been calculated that
the conventional analysis of spectra with the Weisskopf like expression gives
the Fermi gas level density parameter a@ which depends on the reaction studied.
The correct value of the a parameter may be derived with the slope method
by an adjustment of the value of . The value of a increases with an increasing
n, Fig. 1. Usually each different reaction requires a different value of .
Another method of level density determination was proposed by Ericson
[10], who pointed out that absolute cross sections for the formation of isolated
residual levels in compound nucleus reactions depended on the level densities
of various residual puclei formed in the interaction between a particular
projectile and the target. Usually only the residual nuclei formed by the emis-
sion of neutrons, protons and «-particles need to be considered and the level
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M, MMm hmmnupuovwﬂmosg of the Fermi-gas level density parameter a on the power n which

e es the energy &m%wﬁ%ﬁoe of the preexponential term of the level density.

© nput values of a used in the calculation of the theoretical spectra were 6.8 MeV-!
for ©Cu and 5.8 MeV~1 for 60Ni. The figure is taken from Ref. [9]. .

m.mu.ﬂmmamm of the three residual nuclei can be determined from the cross section
of isolated levels. The applicability of this method to level density measure-
ments was demonstrated by Huizenga et al. [11]. These authors have used
the (p, «) and («, p) reactions for the determination of the level density para-
meters. It was found that the back-shifted Fermi gas model [12, 13}, in which
the energy shift 4 is treated as an adjustable parameter @oooz:\aﬁq. for both
nw.o pairing and the shell structure, could be brought into a Qoomommnmoﬁobd
with the experiment, Fig. 2, whereas the conventional shifted quEm gas with A
o@:.& *.”o the pairing energy shifts underestimates the level density at a low
excitation energy giving thus an uncorrect slope of the excitation curves.

.H,ro absolute cross section for isolated levels can be used in conjunction
with the known level width I'y; obtained from cross section fluctuation mea-
surements to determine level densities of compound nuclei [11, 14]. This
method allows to estimate the level density at excitation energies near to
20 MeV. It is based upon the fact that the denominator in the exact differential
cross section formula Eq. (8) is simply related to the total width of a compound
state Iy, and the spacing of the levels D, width spin I and the parity
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Substituting Eq. (9) into (6) for an isolated level with the spin I, and the
parity 7z, and replacing I';; by an average value I' which may be removed

from the summation over I one obtains

4o (Uy, In, 7y, O) U _

dQ Dix
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 8n(2ls + 1)(2s + 1) M (2J + 1) exp [—J(J + 1)/207]
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(10)
where o2 is the spin cutoff factor of the compound nucleus at the excitation
energy U.. By assuming I’ = I'y; information about D,, can be obtained
from Eq. (10) if do/d2 is measured. The averaging procedures applied to
obtained I' and I'y; are not exactly the same, but as was discussed by Huizen-
ga et al. [11] the differences are small compared to the experimental errors in
I'si. The resulting compound nucleus level densities are again fitted best by
the back-shifted Fermi gas level density which reproduces well the low and the
high-excitation energy data [11]. :
The preference of the back-shifted model finds its justifications of Bloch
[15] and Rosenzweig [16]. These authors have shown that when the degen-
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Fig. 2. Differential cross-section at 90°
as a function of the proton bombarding
energy for the %Mn (p, o) 52Cr and
55Mn (p, o1) 52Cr reactions. The lines are
theoretical calculations with various level
density parameters. The energy shifts are
given for residual nuclei formed by o,

4G/ dRgp,y (mb/sleracion™’)

proton and neutron emission, respectively. 10
The dotted lines are constant temperature _ b L
caleulations. The figure is taken from Ref. 80 00 120 140

[11].



eracy of the single particle levels is accounted for, the level density is still
described approximately by the Fermi gas model with an additional shift of
its ground state. For nuclei far from closed shells this shift is about the same
magnitude as and opposite in sign to the pairing energy shift. Neither of these
shifts can be calculated accurately. The total shift can be obtained by matching
the known experimental data with the Fermi gas algebraic formulae. However,
these formulae contain approximations of purely mathematical nature and
their shortcomings for matching experimental data are overcome by parameter
adjustment. The directness of the confrontation of theoretical models with
level density data suffers in consequence.

" III. MICROSCOPIC APPROACH TO LEVEL DENSITIES

In order to improve the methods for exploring the structure of highly
excited nuclei through their level densities and avoid the numerous ap-
proximations some authors calculated level densities numerically [17—19].
Hillman and Grover [17] generated a large set of configurations representing
the ground state and many excited states, by permutation of all the nucleons
among the single particle levels of the shell model. The energies of the con-
figurations corrected for pairing were calculated by the BCS method. The
calculations were restricted to spherical nuclei for which the orbital spin
becomes a good quantum number. The number of levels of a given total
angular momentum 7 for a particular configuration of subshells was calculated
by finding the number of ways in which the components j can couple to J.
The comparison of the results of numerical calculations with those obtained
from the analytical formula, (1) is given in Fig. 3. It is interesting to note that
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Fig. 3. Ratio of level densities calculated numerically to those calculated by analytical
i formula. The figure is taken from Ref. f17].

there is almost no energy dependence of the ratio of level density calculated.
numerically to that calculated from the analytical formula for 166Ho, which
is far from the closed shell, whereas for 14Cd marked discrepancies occur for
both energy and spin dependence. This comparison was made to reveal the
shortcomings of the algebraic formulation. Some of these shortcoming may
be overcome by application of realistic sets of single particle levels in level

.mem?% calculations. The use of single particle levels obtained from a shell

model in the evaluation of level density by the grand partition function
method was initiated by Sano and Yamazaki [20]. In order to obtain
a meaningful comparison between theory and experiment the residual pairing
interaction was introduced and the BCS formalism of the superconductivity
theory was applied to obtain the Hamiltonian describing a system of paired
fermions.

This Hamiltonian is approximately diagonalized by means of a transforma-
tion where the quasiparticle excitations are considered to be independent
fermions with the energy Ej = [(ex — 4)? 4 42]Y2. Here A is the chemical
potential, & are the single particle energies and 4 is the energy gap parameter.

For the paired system of one type nucleons the logarithm -of the grand
partition function Z, obtained as a trace of the Hamiltonian is

pa?

InZ = —8> (ex — 2 — Ey) + MWH= [1 + exp (—BEy)] — (11)
k

where @ is the pairing strength and g is the reciprocal of the temperature ¢.
The summation runs over doubly degenerate ocbitals k. The variables A s A B

satisfy the gap equation
2 M tanh (1/28E

By
k

The state density is given by the inverse Laplace transform of the grand
partition function [10]. Using the saddle point method to evaluate it we obtain
exp §

L i
(2ny™D*

(1)

where n is the number of constants of motion describing the state of the

' system. In the case of a definite energy £ and the number of nucleons N the

entropy & is given by o
S8 =1InZ — BE 4 pAN (14)
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and

(15)

In Eq. (13) both 8 and D should be evaluated for the saddle point values of
the Lagrange multipliers 8 and 2. These values are defined by

o8 o8
=0; — —9. 16
op apa A5}
Differentiating the grand particion function given by Eq. (11) and satisfying
Eq. (16) one finds the number of nucleons N and the energy of the system K

& — A
N — 1 — =2 tanh (3 pEy)|, 17)
Ey
k
& — A 42
E = & |1 — —— tanh Ee)| ——.
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k

Also the spin cut-off parameter 2 can be expressed in terms of the variables
used [22]

02 = § > mZ sech? (18H;). (18)
%

For the entire nucleons we make use of the additive properties of the following
magnitudes

InZ=mm2,+InZ, (19)
E =Ep+ Ea
S =8p+ 8,
02 = g% | o?

here p and n refer to protons and neutrons, respectively. The above expressions
allow to calculate the level density

o(U, Ny, Nu) = (U, Np, Ny)/(2nc2)1/2 (20)
with the excitation energy given by
U = E(t) — E(0). (21)

The model described above was used by Decowski etal. [21, 22] in the
calculations of excitation curves for a variety of neutron induced reactions.
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Fig. 4. Comparison of the experimental Fig. 5. Comparison of the experimental

level density of 56Fe with a microscopic - level density of S0Ni, Ref. [24]. Experi-

theory. The figure is taken from Ref. [24]. mental data: . from counting levels;
Experimental data: o from counting ¥ from IVD,, o2 rigid; — from charged-

levels; ¢ from I/Dg, o? rigid; — from particle spectra. Theoretical calculations:
charged-particle spectra. Theoretical cal- — — — Seeger levels; ... Nix levels.
culations: — — — Seegerlevels; ... Nix

levels.

Bolsterli et al. [23] applied the microscopic model in calculations of the
decay width for fission as well as for neutron and gamma, ray emission. How-
ever, first Behkami and Huizenga [24] and Ignatyuk et al. [25] have
initiated a systematic comparison of the experimental level densities and spin
cut-off factors with the microscopic theory calculations. Such comparisons
were reported for Mn, Fe, Co, Ni and Cu isotopes. Behkami and Huizenga
[24] used two sets of single particle levels obtained by Seeger and Perisho
[26] and by Bolsterli et al. [27] in their calculations. The values of the energy
gap parameters for doubly even nuclei taken from literature [28—31] were
used as input data in the calculations. The resulting level densities for 56Fe
and $Ni are compared with the experimental data in Figs. 4 and 5. The
agreement between the microscopic theory and experiment-is very good.
In Fig. 6 the spin cutoff parameters oz extracted from angular distribution
measurements [32] are compared with the values calculated from mi-
croscopic theory for 56Fe. The importance of the shell structure appears in
that figure in the difference of contributions from neutrons and protons.
The dominance of the proton contribution ¢Z is connected to the large oc-
cupation probability for the 1 f7/2 single particle levels in 56Fe.
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Fig. 7. The excitation energy as a function.

of thermodynamic temperature for dif-
ferent angular momentum projections M
(solid lines). The dott-dashed lines repre-
sent the effective rotational energy. The

thermal excitation energy corresponds to
the M = J = 0 line.

The angular momentum dependence of the level density can be improved
%rms the projection of the angular momentum on the quantization axis is
introduced into the BCS Hamiltonian as an additional constant of motion
[33]. .

In this case the entropy of the nucleus is

8 =% — BE — fAuNn — piN, — polM, (22)

where gas is the Lagrange multiplier which fixes the angular momentum
projection M. The magnitude w may be interpreted as an angular velocity
of the rotational motion connected with the angular momentum. The grand
partition function depends now not only on the single particle energies but
also on the magnetic quantum numbers my of the single particle states.

InZ = —f3 (e~ 2= F) + 3 In 1 + exp (—ple + fomu)] + (23

+ 2 [ + exp (—pEx — fomi)] — pAYG.

| 2

It also applies to the gap equation and the equations defining the constants
of motion N and E. Additionally the angular momentum projection is given

by

N 1 1
E == W\S@@ - I ﬁwﬁv
1+ expfBr — omg) 14 expf(Er -+ wmy)
)

For the nucleus we replace g2 = QN - qw by M = M, 4+ M,. The dependence
of the density of states on M is no longer analytic and the parameter o2 no
longer appears in the calculations. In the case of the shell model scheme the
calculation is complicated because of discontinuities in the above given
equations for the ground state. The unknown variables 4, 4 and o can be
obtained by solving the gap equation, and the equations for N and M, for
given ¢t and @ values. The angular momentum is created by breaking up pairs
and by aligning the resulting quasiparticles which block the single particle
levels close to the Fermi energy. It destroys the pairing correlations and
causes an increase of the momentum of inertia. For angular momenta near
the critical value a thermally assisted pairing can be observed [33, 34]. This
is connected with the fact that at large angular momenta and low temperatures
all the quasiparticles are tightly packed around the Fermi surface. An increase
of temperature, instead of breaking pairs, spreads out the quasiparticles and
diminishes the effect of blocking.

The above formulation takes automatically into account the yrast cut-off
of the spin distribution. In Fig. 7 the excitation energy as a function of tem-
perature is shown. The excitation energies corresponding to different M = J
values at zero temperature are entirely connected with the intrincisc rotation
and define the yrast levels.

The model presented provides a comprehensive view of many physical
quantities like the pairing energy gap, the moment of inertia, the rotational
frequency or the entropy. However, some important limitations are inherent
to the model connected with the existence of spurious solutions and the
reliability of the phase transition effects [35].
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