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Letters to the Editor

DENSITY MATRIX APPROACH TO THE NUCLEAR
E QUILIBRATION PROCESS!

ROLAND REIF*, GERD ROPKE*, HANS-EBERHARD ZSCHAU#*, Dresden

The non-equilibrium statistical operator of Zubarev is proposed to treat the nuclear
equilibration process in the density matrix formalism.

The density matrix formalism developed in non-equilibrium statistical mechanics
to deseribe the time evolution of open quantal systems can be used to derive the results
of the statistical model of nuclear reactions [1]. This approach starts from the Liouville
equation ig(¢) = Lo(t) for the reduced density matrix o(¢) with a non-hermitean Liouville
operator L = Lo + La, the dissipative part of which results from a (weak) coupling
of the system (incoming and outgoing particles, target and residual nuclei) to the environ-
ment. For the stationary state ot —> ) (flux equilibrium) an integral equation can be
derived without referring to the density matrix at transient times. An approximate
solution of this equation leads to expressions for the cross sections of compound reactions
(eavporation from equilibrium states) parametrized according to the pumping and
damping constants of La.

In order to include @ﬂm.ooﬂdwoﬁbg reactions we will construct the non-equilibrium
statistical operator o(t) of Zubarev {2] at transient times. We assume that after a few
scattering ovents all the impact energy will be distributed within the ,hot gas of excited
nucleons'. Due to the interaction of this hot nucleon gas with the rest of the nucleus
an equilibration (relaxation) process oceurs, both temperatures equilibrate to the final
temperature of the compound nucleus (hydrodynamic stage 3.

To be more exact, we start from the Fermigas model and divide the total system into
four subsystems (see Fig. 1): (1)-particles occupying states below the Fermi surface er,
(2)-particles in states between er and the nucleon binding energy Es (3)-particles inside
the normalization volume with energies above Ez, (4)-particles emitted from the (decay-
ng) composite system. The total Hamiltonian H contains coupling terms between these
subsystems ((4) is coupled to (1) and (2) via (3), only). The relaxation proceeds as an
exchange of energy and particles between the subsystems, the flow of which has to be
caleulated. The ain assumption is that there exists approximately a quasiequilibrium
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; 1 Fig. 1. Subsystems introduced to describe the nuclear equilibration
(4) M (3. ." (4) process.
i 1

within the subsystems; the mean values of observable Pm (e. g. energy H; and particle
number Ni, ¢ = 1, 2, 3) characterize the non-equilibrium state. E

According to the method of Zubarev we construct the non-equilibrium statistical
-operator g(t)

o{t) = lwlmu% 4+B), @ =TrexpAd + B,
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~which depends only on the observables Pr and fulfils the Liouville equation for ¢-—> + 0
{inf initesimal contact with the environment).

If the conditions
N,_ﬁmmua— = Hqﬁmnwua
with the quasiequilibrium statistical operator

1
gg = — 08y Qp= Tret

Qq

are fulfilled, the macroscopic parameters Fm have the physical meaning of the invery?
temperature and the chemical potential w:f:.

With o(t), which contains memory effects in the term B, we obtain average pariicis
and energy fluxes (N>, {H:>. By the expansion of o(t) for a small B, these flux s wre
-expressed by correlation functions, and in & linear approximation we can introduce the
Xkinetic coefficients 771 Neglecting the term AFn/dtPn in B, a system of coupled equetions

for ¢, pt4 may be set up, e. g
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The kinetic coefficients contain combinations of occupation numbers like
{nlien,t)y = (1 + efillea-mily-1, §=1,2,3
and squared matrix elements between energy conserving two-body scattering states
| oyarg| Viasore ) |20(ea, + ap — Ear’ — €qt)-

B In the simplest m@wnow._amﬁ.o,s. the kinetic coefficients are calculated with any constant
values of fi, ui {final values). Then, with physical assumptions on the initial conditions
Bt = 0), pilt = 0) after the first step of the ‘reaction, the coupled equations can be
solved immediately by exponential functions, and the inverse temperature and the
chemical potential are obtained in dependence on time. Especially, the distribution
of the nucleons in the subsystem (3) is described by a time dependent temperature and
a time dependent chemical potential, which determines the energy distribution and
intensity of the emitted particles (subsystem (4)) in dependence on time.

Dividing the subsystems further we obtain in the limit a kinetic equation for oc-
cupation numbers (no temperature). Further the set of observables Pn can be extended
by adding the momentum of subsystems P to treat the time dependence of the angular
distribution of particles emitted during the equilibration process.
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