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NOTE ON THE STRUCTURE OF QEANTAL PROPOSITION
SYSTEM

SYLVIA PULMANNOVA¥*, Bratislava

It is shown that the motivation of the axioms of atomicity and of the
covering law in the set L of all propositions, analogical with Jauch’s and
Piron’s motivation in [3], is possible also in the probabilistic formulation.
The new definition of state, mentioned in [3], reformulates to the statement
that the state (pure) is unambiguously defined by the set Sy = {lacL;
f(a) = i}. The introduction of the notion of the support of the state and the
ascribing of atomic supports to the pure states enables us to explain the role
of the dispersionfree states in the definition of the compatibility of pro-
positions and in the determination of the partial ordering in L.

1. INTRODUCTION

The set L of all propositions of a physical system has according to Jauch
[1] and Piron [2] the following properties: 1) L is a partially ordered set;
1t) for every proposition a € L there exists an orthocomplement a’ € L: 1) L
is a complete lattice; ) L is a weakly modular lattice; v) L is an atomic lattice;
vi) for every proposition b € L and any atom ecL, b<a <eV b implies
either = b or x = e/ b (the covering law). A

While the properties 2), #¢), 4v) can be easily derived from the natural physi-
cal properties of the system, it is difficult to find a natural physical motivation
of the properties 4ii), v) and vi). Jauch and Piron [3] tried to justify these
properties on the basis of a new definition of the state, not involving any prob-
ability statements. The state is defined as the subset of all true propositions
in L. This definition is an analog of the classical notion of state and corresponds
to the way in which the state is usually prepared.

The aim of this paper is to show that arguments for the motivation of v)
and vi), similar to that used in [3], can be found also in the probabilistic
formulation. Some simple consequences of the Jauch’s and Piron’s new de-
finition of the state are also mentioned.
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II. AXIOMS v) AND vi)

We will assume that the axioms ) through iv) are satisfied. In the probabil-
istic formulation the state is defined as the probability measure on L, that is,
as the function f: L - R, were R is the real line, with the following properties:

1.0 < fla) < 1for everyae L;

2. /(0) = 0, f{1) = 1;

3.if a1, az, ... is the countable set of pairwise mutually disjoint (that is
a1 < a; for ¢ # j) elements of L, then

f(Viaz) = 2if(ay).

Each theory based on the experiment must involve additional assumptions
4. a = b{=) f(a) = f(b) for all f;
5.0 < b{=) fla) < f(b) for all f.
We shall further assume, as in [3], that:
6. flar) =1, forall s €T = f(A a;) = 1;
T

7. To every a € L, there exists a state f such that f(a) = 1.
From these properties it follows

f@)=1— f(a) for every f; (1)

and by this relation the orthocomplement a’ to 4 is uniquely defined.
Jauch and Piron [3] defined the state as a set:

8 = {a € L; a is true}. v (2)

In the probabilistic formulation proposition a is true in the state fif fa) = 1.
Let F be the set of all states. To every f € F let us define the set

Sy={aeL;fle) =1}. 3)

The set Sy has evidently the following properties:
1.a €8, a < bimplies b e Sy,
2.0 €8y, b € 8y implies a A b € 8;.
The element A @ is called the support of the state f, supp f. The set Sy can
asSy
be expressed in the form
Sy={aeL;suppf <a}. 4)

We will investigate under what conditions the set S; uniquely defines the
state f. Let f be a mixed state, that is

‘\.“\x...\wl*lA~|»v.\.mw.\w?\.mm§uOA\).AH. (5)
If aeSf=fla)=1=fla')=0 = Mia) + (1 — A)fela’) =0 = fila') =
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= fala') = 0 = fi(a) = Lfofa) =1 = ¢ S €8,,, that is §; < 8, N S,
Conversely, if @ & 8§, and ¢ ¢ S;,, then Afi(a) -+ (1 — 2)fo(a) =fla)=1=gq¢
= %\.

Thus we have

Q\”»@_Drm«\n. . A@v

From (6) can be derived the following assertion about the supports a, @, ay,
of the states S fiand fo, respectively,

Oy = Q‘D AV Ay, - AQV

Indeed, by (4) S al{=)aeS, by (6) this is equivalent to o €8, and
ae8, {=>a, <a, %4 S al{=)a,V a, <a, that is ar=a,\ a,.
Proposition a; in (7) is the support of the mixture of states Jiand f; for
every 1. The mixed state is then not uniquely determined by the set S;.
Now let us consider the pure state fy with the support a; . If there existg
beL b < ., then the state Jfi, in which Ji(b) = 1, has the support a;, <.
But the state

f=fo+0-fi, 0<i<1,

has the support

e =a,V @, = a,, becauss e, <b<a,.
The states f and Jo have then the same support, and consequently the state f,
is not uniquely determined by the set 8y, For the set 8;, uniquely to define
the state Jo. @0 must be an atom in L, that is, there must exist g one to one
correspondence between the bure states in ¥ and the atoms in L. A similar
situation is in the standard logics, that is in the Pproposition systems consisting
of all closed subspaces of the separable Hilbert space [7].

Let us consider now the axiom v). It is shown in [3] that the covering law

&MN\M&<$&TSthuﬁmmmzmgsU:EE% ‘

either y =z or y = z v/ 7, | (8)

is equivalent to the Property
element gV ')A a, 7, ¢e€lL, qisan atom, is an atom in J,. (9)
For the motivation analogical to that in [3], let us define operations on the
set F, that is to every a € L let us assign the transformation 7, from F into
F [4, 9], where

Tof = fla)fra1, fia €F, and F} = (fe F; fla) = 1}. (10)

The operation 7, can be interpreted as the change of the state which occurs
by the measurement of the proposition a. In the case of the result of the
experiment being 1, the original state f changes into the state Jiay. This is in

236

agreement with the von Neumann postulate of repetition [8, p. 177, postulate
(M)]. Concerning operations T2 we shall assume:

1.7, a€elLis a pure operation, that is if fis a pure state, then the final
state fi,; will be also pure.

2.a<b uv%a%w”%a% =1T,.

Assumption 1. can be similarly as in [3], motivated so that it is the expression

information about the system.

Assumption 2. is motivated by the case of the classical system: axiom i)
namely implies that o and b are compatible if ¢ < b,

We shall show, similarly as in [6], that if

Tof = fO)fir; fimn € F}, f(b) 0 ana (11)
supp f = a, then

B = supp fiy < (a Vv o)A b. (12)

Indeed, (a \/ b') =a' A b < b, therefore by the property 2 of the operation
T. we have ‘

Tor niTef = f(6)fs(a’ N\ O aty = Tr po f = fla’ A ) fiar poy»
that is

Jola' A B) = I.MAMVI But o' A b <a, fla)y=o0 =>fl@’ A b)=0, there-
fore fala \/ b') = 1 = B<aV b Because 8 < b, we have B<(avb) A b.

Let f be a pure state. Then a is an atom. By the property 1 of the operations
Ta, B is an atom, too. For the operations 7', we can prove that ifa, b € I, and
@ is compatible with b, a <> b, then

N«@N*e = N«a&da =dagrn _ﬁuu _...ﬂ c“wv

The elements a, belL are compatible iff there exists a, b, cel pairvise
mutually disjoint and such that

&”n«w/\au @”9/\9 Awﬁv
Because g < b, by iv) B« b. Then also B« b. By (13)
ToTof = fOUfslB')f ) = 0 — Ty pof = f(B' A\ b)f,, bl

that is f(8' A b)=0=4 < B AL =4y B. Therefore we have

C=VVEY <V =ay O <BVY US<S>@M%<S>~VHR.
(15)

The last equality follows from 5v):
B<b=b=pV@BAR) =p=b— (b, BY=bABABY =bA@ v p).
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. From (12) and (15) it follows that B=1(aVb)Ab, and § is an atom in [,
if g is an atom, that is, the covering law holds.

HI. THE NOTION OF THE COMPATIBILITY OF PROPOSITIONS

We shall show that for the compatible propositions a, b in L there exists
& common set of dispersionfree pure states in F, which is complete on the
m_wnvouomu sublattice of L, generated by a, b. We recall, that the set P of states
1s complete on some set M of propositions, if for each two propositions r,yeM,
¥ 7 y; there exists a state f € P, for which f(z) == fly).

Let us write

F? = {feF; fpure; fla) = 1},

%meﬂm%mﬁw\wcuom\?vHoramb. (16)
Then the set of all dispersionfree pure states of a is
R =F2?UFY?, (17)

.H“Lo.a a,bel, gesb. By(14)isa = a, Vv c;b="0b1Ve¢;am, by, care pairwise
disjoint and a; = a A ¥, b; = a'ANb, c=aAb. It is known [1, 2, 7] that
b > aes b

a=(@Ab)V @Ab)=cV a, (18)
b = (a' A YW (Ab)=dy a,

where d = o' A b, q;, b1, ¢, d are pairwise disjoint.
Let us consider the following set of pure states from F:

8 ={f;suppf <} U {f; supp f < bi} U {f; supp f < ¢} U

VU {f; supp f < d}, feF, f pure. (19)
The set S is complete for the Boolean lattice generatsd by (a, b), which is
composed from the propositions (a, b, a’, b, a \/ b, a A\ b,a b, ...)because

for each two propositions there exists f € § with the different probabilities.
It is clear, that

S < Ffand S < F?. (20)

Indeed, if fe 8, supp f < ¢, then supp f < a and supp f < b, that is f €
R, feF?; if supp f < d = supp f < a', supp f < b’ = fla) = 0, f(b) = 0,
and feFP, feFRP>. If supp f < a1 = suppf <a, suppf < &' and feF.’
and f € F;”. Analogically, suppf < by = fe F?, fe Fi».

On the other hand, if the sublattice generated by («, b) has a common set
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of dispersionfree pure states, it is a Boolean lattice (that is, g <> b) [1]. We can
give another proof in our special case. Let S be the complete set. Then for
each fe S

fla)=1=f(b) =1 or f(b) =0,
f(b) =1 = f(a) = 1 or f(a) = 0. (21)

Let us denote supp f = ¢, ¢ is an atom in L. Then (21) can be rewritten in
the form

g<a=g<borg<¥,

g<b=g<aorg<a. (22)
Let us write
c=Vq .
{9:9<a, ¢ <b}, (23)
Q\H”/\Q‘ @H”<Q

{:9<a,¢<V} {g;9<a,q <0},

where ¢ = supp fand f e 8.

Then a;, b; and ¢ are paerwise disjoint. Evidently, a1\ ¢ < a; bV ¢ <b.

Then for feS; fla) =0 = fla1V ¢) = 0, f(b) = 0 = f(b,\V ¢) = 0. But if
S €8, fla) = 1, then by (22), (23) supp f < c or supp f < a1; in both cases
flarV ¢) = fla1) + f(c) = 1. We see, that for each fe S is flar vV ¢) = fla),
J(t1) V ¢) = f(b), and because the set S is complete, we have a; V ¢ = a,
b1V ¢=b; that is a<> b. )

Further we can show, that the sets F¥* g e L, determine the partial ordering
in L, that is

F? <F¥<«q<babel. (24)

Indeed, f € F}?, iff ¢ = supp f < a. By the assumption, it is also g <b. But.
thenV/ ¢ < b, thatisa <b, g
{g < a, a atom},

because we can show, that for each a € L:
a =\ p, where

{p e M},
e = {pis an atom in L; p < a}.
Indeed,
Ve<a=a=(Vp)V (@A (Vo))
{p € Ma} peMs {peMd}
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Ifa A (v p)y - 0, then by v) there should exist an
{p e M}
atomgelL, g < an(Vp) > 9 <aq<(Vp)y, which is in contradiction
{pem, pemM,)
with the definition of \/ »- Thatis \/ p = 4. The converse implication in (24)

pedsy (pem,
is evident from the definition of the sets F? zeL.
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