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CONVEX PROPERTIES QF THE GRAND CANONICAL
POTENTIAL

WENFRIED LUCHT*, Halle/Saale

dynamic potential NT, V, u) Possesses certain convex properties. This fact
18 applied to Wentzel’s method of the thermodynamic equivalent Hamilto-
nian [1] to obtain inequalities which can easily be calculated,

I INTRODUCTION

In statistical mechanics the computation of lower and upper bounds for
physical expressions plays a considerable role. In this article such bounds are
calculated for the grand canonical thermodynamic potential Q — QT, V, w)
of a system of fermions or bosons enclosed in a volume V at temperature 7'.
4 is the chemieal potential. The estimates are deducted from general convex

Il. CONVEX PROPERTIES OF THE POTENTIAL
We consider a system of fermions or bosons which is described by a Hamil-

tonian of the form

H(X) = [dly(1){Ho(1) + X(1)}p(1) + } [d1dzyrypr2)p, 2)p(2)p(1)
(1)
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F(X) = F(3a®,) = Flay, o, . . ., ay) = Fla),

Q== AQT gy v ovsy E_Av.
Applying the relations (3), (6), (11) and the orthonormality of the @,, we find
2F(a)

20, 1, 2; X)Ds(2) = .
[ d1d2a,(1)6(1, 2; X)dy(2) P

(12)

Further we define the (M, M)-matrix
9%F(q)

=ik = dasdag

e, B=1,2, ... M,

take a as a real M-dimensiona] column vector, a’ as the transposed ﬁwoao.n and
evaluate the quadratic form a’Ba. With the help of (8), (9) and (12) we arrive at

o*F "
AQV ag = Aallg QHQMQQACQC. 2; Nvelwv =
Oaadag

o,f x,f
=2 tatp [ d1@u(1)15P4(1) = > aia > 0.
a,f : a

a'Ba = Ay

We see that the matrix B is positiv semidefinite. Therefore it follows that
F(a) is convex in the real M -dimensional space Ry, [6]. This means F(X) —
= F(a) satisfies .

Flnar + (1 — mas < pF(ay) + (1 — NF(:); 0<y<1, (13)
oF(ag)

F(a;) — Flas) > (@ — a®) 2a®

= (1 — @) grad,, F(ap). (1)

Applying (13) twice and looking at the definition (4), we find for the thermo-
dynamic potential the inequality (5 £ 0)
1 1 1
72 ({1 ——]a}+ (1 — n)€(a) < 2(0) < —Q((1 — y)a) + (1 — m a),(15)
n 1
£2(0) = Q is the potential we are interested in. The left-hand side of (15) one
can estimate further with the help of (4) and (13):
1 1
721 ——]a) + (1 — ym)Qa) < 2L ——la) + (1 — ym)0(a),(16)
7 Ui
»,OHQ@Ns@@bma.SH_.w‘..: ‘ ]
The inequality chain s (15) and (16) can be used to estimate the thermodynamic
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Potential Q(0) = Q in some practical cases. For this purpose the varia bility
of the parameters 5 and q — (@1, 0z, ..., ay) can be exploited. In the following
the relations (15) and (16) are applied to Wentzel’s method of the “‘thermo-
dynamic equivalent Hamiltonian” [11].

IIl. METHOD OF THE EQUIVALENT HAMILTONIAN

First we rewrite the Hamiltonian (1) with the relationg (2) finding

v (0)
H(X) = [ dlyp*(1) {Hy(1) — T X)) + 3 [ diden(ypq, 2)N(2).

(17)
We introduce the fluctuation operator
AN(1) = N(1) — n(1), (18)

where #(1) shall be a certain ¢-number function which will be specified later.
Introducing the identity

N(I)N(2) = AN(1)AN(2) + n(2)N(1) 4 n(1)N(2) — n(L)n( 2)
into the operator (17) we gain

H(X) = Ho(X) + H', (19a)
V(o
Hy(X) = Ey + [diyH(1) TE: — M ) + [ d2n(2)¥7(1, 2) + X(1) (1), (19b)
H =1 % d1d24N(1)V(1, 2)4AN(2), (19¢)
Eo = —§ [d1azn(1)v(1, 2)n(2). (19d)

We have exploited V(1,2) = V(1—2) and assumed that V(0) is finite. Tn
a system of charged particles V{r) tends to infinity as r — 0; the corresponding
contribution is, however, not an interaction energy term, but a selfenergy
term and we must drop it [3], [7]. An exact solution of the Problem associated
with (19) is, of course, out of question. However, this is possible in the thermo-
dynamic limit (N - 0, V —» o0, NjV = constant) if the number operator N(1)
will be replaced by its diagonal part N(1) -» Np(l)

No(l) = (pH(1)y(1))p = 2L AL)2CHCy. (20)

Because of (19b) we have the field operator y(1) expanded in the manner p(l) =
= 2 %a(1)Cy, where the & « satisfy
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EEI%,T d2n(2) V(1, MTCQL Fa(l) = el X)Full).  (21)

In (18) and (19) we replace N(1) by Np(1). Then there resultes the new
(model) Hamiltonian

Hu(X) = Ho(X) + Hy.  (22a)
Ho(X) = By + Sea(X)CHCa. (22b)

M. D. Girardeau [8] has shown within a perturbation calculation i.&e in
the thermodynamic limit (in [8] is X(1) = 0) H}, becomes negligible in the
sense that

20) = — WF Trexp [—p(Hm(0) — uN)1, (23)

differs from

1
2(0) = — 5 In T7 exp [—B(Ho(0) — uN)], (24)
only by a thermodynamically negligible term provided the ¢-number function
n(1) is chosen in the form

TrNpexp [—B(Ho(0) — ulN)]
Tr exp [—B(Ho(0) — uN)]

Thus the knowledge of (24) is sufficient in this case. According to (22b) we
need the &o(X), i. e. the solutions of the Schrodinger equation Am.:. Even if
X = 0, the construction of these eigenvalues is in general not possible. There-
fore we want to show that we can get simple inequalities using arw general
convex properties of the thermodynamic potential Q, or £y, respectively.

(25)

n(1) = (N (1))o = (Np(1))o =

IV. EXPLICIT LOWER AND UPPER BOUNDS

We employ (15) with the substitution 2 = Q,, where Q is given by Aw.pw
In (21) the expansion (10) is used. If one chooses M large enough so that wit

a sufficient accuracy .
s

[ d2n(2)V(1, 2) ~ 3 bads,
- a=1

then one can set (£ a real parameter)

ay = —&by or a= —¢&b
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and gets instead of (21)

V(o) |
Hol) = =7+ (1= &) [ d2m(2)V (1, )} Fo(1; §) = ea() a1 £). (26)

The corresponding thermodynamic potential is in the &-notation

o(a) = Qo(—8b) = Qo(&) = — WE Tr exp [—B(Ho(¢) — uDN)],
or according to (22b) explicit
Q0(8) = By — m, InTrexp [—p M (eal§) — w)C;C0] - 27
We have also with 0 < 4 < 1
7|1 — w + (1= 9)Q(1) <0 < .M.o% —n)+{1— w Qo(1).  (28)

To calculate 2y(1) we must solve (26), setting £ = 1.1In a homogeneous me-
dium, for instance, (with U (1) = 0 in (3)) this problem is trivial. To find
20(1 — 7) we substitute in (26) £ = 1 — 5 and use the fact that 7 can be chosen
arbitrarily small (but 7 % 0, of course). Then the standard perturbation
theory [2] can be used to find el — 7). 5 is the expansion parameter in the
perturbation series. With these remarks the upper hound in (28) is considered
to be known. Next it is shown that the lower bound in (28) can be estimated
to give a very simple result. For this we take (16) with m = 1. Thus we have

1 1

7|1 — )4 (L — Q1) < Q0|1 — = & (1— (1) < Q. (29)
n* 7

Further the general inequalities [9]
Trexp(4 + B) <Tr exp A exp B < (Tr exp 24)Y(T'r exp 2B)1/2, (30)

are valid for the Hermitean operators 4 and B. (The existence of the 7T%-
-operation is assumed). We write

[ V(0)
Ho(§) — puN = .:Ef;mocv — -

5 T (L—8) |d2n(@)7(1, 2)} (1) =

= H, — W,

W = [d1d2n(2)¥(1, 2)N(1) = S WasC:04 (31)
J pa
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and define
A= —pHy;; B=ptW; fn=1—7n"; 0<py<l.

Introducing these definitions into (30) we have gained

w
bimi”l W ~:S§0Nwmlmﬁmm|misuu\|l m Ezﬂwoxwﬁlwmm.v.f

+ In Tr exp (28, W)]

and we can estimate (29) in the manner

Im 7% In Tr exp (—28H,) — m n* In Tr exp (28, W) -

+ (1 — ) Q1) < yf0(n) + (1 — 77)20(1) < Q. (32)

Since In T'r exp (—2BH,) is independent of # and 0 < 1 < 1 the first term
on the left-hand side of (32) can be made arbitrarily small if » is sufficient high.
The second term on the lefthand side of (32) is calculated explicitly in the
abstract occupationnumber Hilbert space. Looking at (31), we find

Trexp (286 W) = 3 (m, ..., Rolexp (285n > WagCiCh)lmr ..., Ney =

N yere, P «p

M A:r e o [€XP (2680 D WaaliCol ma . .. Moy =

W1,

=1 nﬁq exp (286nWaaCFCo) = IT (1 + exp (2, Waa))H —

—_ W 7% In T'r exp (2BE, W) = F W 7t > In[1 £+ exp (266, Wad)l,

(upper sign: fermions; lower sign: bosons). It is reasonable to assume Wy > 0.
Then we arrive at

m 7 > In[1 4 exp (266, Waa)] = 0; 0 <y < 1.

Therefore the inequality (32) leads to the simple result
2(1) < D, |
giving the final lower and upper bounds
1

H .
Qo(1) Qo< — Q1 — )+ {1 — | Qo(1); 0<py<l. (33
n n
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V. DISCUSSION

We have derived fairly general convex properties of the grand canonical
potential in a domain of the real M-dimensional number space Rj. This
enabled us to write the inequality chains (15) and (16) for the thermodynamic
potential Q. The estimates (15) and (16) are valuable if one can choose the
parameters a and 7 in such a manner that the corresponding thermodynamic
potentials can be calculated. This is the case, for example, in the theory of the
thermodynamic equivalent Hamiltonian. We have shown that in this frame-
work the grand canonical potential possesses lower and upper bounds (see
inequality (33)), which can easily be calculated. What one must do is to choose
suitably a number of parameters.
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