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A CONTRIBUTION TO THE THERMAL DEFOCUSING
OF THE INTENSIVE LIGHT BEAM IN A NONLINEAR MEDIUM

DAGMAR SENDERAKOVA*, Bratislava

.This paper presents a theoretical and experimental study of thermal
self-defocusing in a nonlinear medium neglecting aberrations and convention
currents caused by the local heating of the medium along the beam path.
To observe this phenomenon, acetone and the He-Ne laser with a relatively
small output power were used.

I. INTRODUCTION

The first paper on the experimental observations of the thermal defocusing
phenomenon in a nonlinear medium was published in 1967 [1]. Since then the
thermal self-action phenomenon of the intensive light wave has been in-
vestigated both theoretically and experimentally in many other works.

The theoretical part of this paper deals with the solution of the problem
of the intensive light beam thermal self-action in a nonlinear medium. This
solution is based on both the Fermat principle and the thermal conductivity
equation. :

In the experimental part we have verified the theoretical results and in-
vestigated the thermal defocusing phenomenon in a liquid. To observe and
study thermal defocusing a He-Ne laser was used, the output power of which
was about 8 mW.

II. THEORETICAL PART

Let us suppose that an intensive light beam with a divergence of 26, trans-
verses a medium characterized by the refractive index ng, the absorption
coefficient a, the thermal conductivity & and the density ¢. For the theoretical
calculation we have chosen a coordinate system with the origin in the plane,
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bordering the medium through which the beam passed. The z axis was identi-
cal with the beam axis (in the direction of the light propagation), the y axis
was in the radial direction.

Owing to the absorption of the beam energy the medium becomes warm.
At the time ¢ and in a place determined by the coordinates (x, ) the tempe-
rature of the medium increases from the original value 7' to the <m€o To +
4 AT(z, y, t) and therefore the refractive index of the medium also increases
to the value np + An(z, y, t). Then we can write the refractive index of the
medium at the point (z, y) in the form

on
30&. Y, 3 = g | BS\A&‘ Y 3 = no + a&sﬁﬁu Y, &v . A”:

The distribution of the refractive index in the medium is determined by the
intensity distribution in the cross-section of the light beam. Let us mcw.wom.m
that we have a light beam with the radius ro and with the Gaussian distri-
bution of amplitude A(y) in the cross-section given by

Aly) = Ao exp {—y?rg} - . (2)
Then the change of the temperature AT (z, y,t) may be written as [2]:

i t \ ’ ’
ATy, ) =2z [ [ yQW)Gy.y, 1) dy d, (3)
yi=0 /=0
where
2Pafl — o) 9y2
N = exp|{ ——— . (4)
Q') s p 2

is the heat developed by the absorption of the beam energy per unit time
and per unit volume, and the temperature change due to a unit instantenous
cylindrical surface source aty =y’ and ¢ = 0 is determined by means of the
Green function

1 v+ y? Y’

AN P — .N A.mv
G,y 0) =" P e |\ 2Dr

P is the light beam power [W], D = kfgc is the thermal diffusivity [m?/s],
I is the thermal conductivity [W/m grad], ¢ is the specific heat [J/kg grad]
and Io(z) = Jo(iz), where Jo is the Bessel function. .

From the relations (1), (2) and (3) the refractive index of the medium is
given by [2, 5]:

nl(z, ¥, t) = no + Ci(1 — ax) (C2 — Csy?) , (6)
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where

o .o «P o0 —1 2t o . 2
YT or 4k’ lep+$ ’ TR+ b2t

and ¢, = rg/4D is a characteristic time for the given medium and beam.

- The relation (6) shows that if an intensive light beam propagates in
a medium, then its refractive index is changed, the medium becomes non-
linear and re-acts on the propagation of the individual rays of the beam.
The path of an arbitrary ray in the light beam may be determined by using
both the relation (6) and the Fermat principle according to which light propa-
gates between two points M, N in the medium characterized: by the refractive
index n(z, y, t) along the optical path given by

N N dy
8f n(x,y,t)ds =0 or d{Fla,y, — ,t|jde = 0. (7)
M M dx

In our case

Flz, y, dylde, 1) = [no + Ca(1 — ax) (Cs — Cay?)] /1 + (dyfdz)? .

From the calculus of variations it follows that (7) is valid if the function
y(z, t), which determines the path of an arbitrary ray in the beam, is the
solution of the Euler equation:

oaF a oF

oy dx oy

0. (8)

The equation (8) can be solved by an iterative method. Supposing n = ng
in the first approximation, i.e. there is no nonlinearity of the medium, the line

ylz, t) = mx + ao, (9a)

where

a; = &m @cw ag = w\AOv s Aguv

describing the path of the light ray, is the solution of the equation (8). A dis-
tance between the ray and the beam axis in the entering plane is denoted
as y(0).

For the second approximation let us suppose that the inhomogenous distri-
bution of the refractive index in the medium causes only a small path deviation
of the light ray from the line and it can be expressed by a quadratic term

in the path equation, i.e.

y(x, t) = aex? + a1z + ag , (10)
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where axx? < a1z -+ ao. Taking into account the above mentioned assumptions,
the coefficient ag is obtained by solving the equation (8) in the form [5]:

on oaP y(0)
T T 2rnlrok(l 4 tef2t) 7

ag = . (1D

1t can be seen from (10) that the self-action of the light beam is dependen
on the sign of the coefficient az, i.e. on the fact if the index of refraction is
an increasing or a decreasing function of the temperature.

In the case of dn/oT < 0, ie. aa > 0, the deviation of the rays from
both the initial direction and the direction of the beam axis increases, i.e.
a thermal defocusing of the light beam appears.

If 9njoT > 0, ie. az < 0, the light rays approach the beam axis after
passing through the medium, i.e. there appears thermal self-focusing.

The relationship for the light beam divergence @ in the nonlinear medium
(i.e. the deviation of the different rays from the initial direction) can be ob-
tained by differentiation of (10) in the form

one Py y(0)

=_ e—— X ﬂ @ 2 AHMV
tg Oz, y, t) m%n$§ﬁ+£§ 7o T

where the coefficients ag, a1, a2 are given by (9b) and (10). From (12) it may
be seen that the divergence @ increases with an increase of both the laser
output power P and the path x passed by a beam in the nonlinear medium,
as well. The divergence @ decreases with both the increase of the beam ra-
dius 7o and the decrease of the distance y(0) of the ray entering the medium.

In paper [3] the divergence relationship for the light beam during thermal
self-focusing was derived in the form

0 o on P[l — exp(—oax)]
4= O0a o T k(1 + 7ft)

, (13)
where 1 = r3/8D and the border rays of the beam only were considered,
ie. y(0) = ro. The relation (13) was obtained by a simultaneous solution
of both the wave equation in a geometrical approximation and the thermal
conductivity equation.

Tt can be seen that (12) and (13) are identical by following the assumptions:
tg @ ~ @; 1 — exp(—ax) ~ ox. The relation ¢, = 27 is valid for the charac-
teristic times f. and 7. The different signs of the changes 40 = @ — @, are
due to the fact that the relation (12) is universal while the one in (13) was
derived in the case of thermal defocusing where on/0T < 0 [3].
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III. EXPERIMENTAL PART

The thermal defocusing phenomenon of the intensive light beam in a non-
linear medium was investigated. The experimental arrangement is shown
in Fig. 1. :

Fig. 1. Experimental arrangement for the
measurement of thermal defocusing in

a nonlinéar medium. 1 — He-Ne laser; . !

2, 3 — filters; 4 — cell containing a non- £ 7 ~ __ f|+_ di 1 x

linear medium-acetone; 5 — diaphragm; 1} I R
6 — camera. d 23] « 5 ¢ 6

A He-Ne laser with an output power of about Po ~ 8 mW at 1 = 632.8 nm
was used as the source of the light beam. The radiation energy of the laser
beam was changed by a neutral polarization filter 3. The laser beam passed
through a glass cylindrical cell of a diameter d = 0.03 m containing a non-
linear medium. In our case acetone was used. Its parameters were: no =
= 1.36; —dn/oT = 4.9 X 10~4 grad—1; & = 0.168 W/m grad ; « = (3.28 - 0.03)X
X 103 em~1. After passing the cell the beam was photographed in two diffe-
rent places of a given distance. The beam divergence was determined by
photometering the two photorgaphed beam cross-sections. The output power
stability of the laser was checked by a photometer.

During the investigation of the thermal defocusing phenomenon we have
determined the dependence of the laser beam divergence on the relative laser
power P[Py, where P/Pg = efeg. The values e and ¢y are the photometer read-
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Fig. 2. The dependence of the laser beam  Fig. 3. The dependence of the laser beam
divergence on the laser power (> fc ~ divergence on the distance x passed by
~ 38, o = % {0) = (10.59 &+ 1.39) X the beam in a nonlinear medium (¢ > # ~
X 1074 m, y2(0) = (9.16 £ 1.37) X 10~4m). ~ 35, 7o = %,(0) = (10.22 4 1.22) X

X 104 m, 42(0) = (8.87 + 1.27) X 10~4m).
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ings with or without the filter 3 (Fig. 2). The length of the cell was 50 cm.
The divergence ® was determined for two differently defined beam radii.
One of them was defined by the decrease of the maximum intensity of the
beam Io to the value I = Iy/e? and the other was given by the decrease of the
intensity Io to the value I = Io/e in the same beam cross-section. Let us de-
note the slopes of the dependences @ = f(P/Po) belonging to two different
radius definitions as k; and ks. Then it follows from (12)

kafky = y2(0)/y1(0) . (14)

The obtained values are summarized in Tab. 1.

Table 1

The table presents the comparison of both the theoretical and the experimental results

i
Teofle Y2(0)fy1(0) P [mW] _ Poa [mW]
| © = f(PIPo) | 0973 | 0.865 8.28 4 3.40 I 9.86 & 2.26
_ |
_ O = f(z) 0.791 0.868 1.72 4 0.55 » 2.04 + 0.51

Fig. 3 shows the dependences of the light beam divergence © on the distance
which the beam passed in the nonlinear medium. The distance z was changed
using the cells of several lengths « = 19 cm; 29 cm; 39 cm; 50 cm. The de-
pendence 6O = f(x) was determined for the two differently defined radii
(I = Iofe?; Iofe), too. Our measurements can be verified again according
to relation (14) and the obtained values are given in Tab. 1.

The values of ¥1(0), y2(0) were determined by both the light beam diver-
gence O in the air and the distances 1 and 1’ (Fig. 1). The radius defined by the
decrease of the intensity Io to the value I = Iofe? was regarded as the radius
of the whole beam. It is obvious from this that ro = 1(0).

Fig. 4 presents some records used to determine the beam divergence.

IV. CONCLUSION

Trom the used iterative method it is obvious that in our experimental
conditions the relation (12) is only valid up to distances of < 5 m [5]. Since
the lengths of our cells were x < 50 cm, the relation (12) in our case was
valid in the first approximation. .

From Figs. 2 and 3 it may be seen that the theoretically derived linear
character of both dependences @ = f(P) and O = f(x) has been <oamom
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Fig. 4. Some photograph and photometer records used to determine the beam divergence.

The distance between the two photographed cross-sections of the laser beam was I =

= 1.6 m. The length of the cell was 50 cm. The relative laser powers of the beam passing

through the acetone were a — P[Py = 6.08, ¢ — P[Py = 26.1. The relative laser powers
of the beam passing air were b — P[Py = 6.08, d — P[Py = 26.1.

by the experimental results. The fact that the different parts of the light beam
(having the axes identical with the beam axis) diverge differently, i.c. ©@ = f(y),
has been verified, too.

From our theory according to (12) it follows that both the fractions kp/k:
and y2(0)/y1(0) should have the same value. As Tab. 1 shows our experiments
confirmed this fact within the experimental errors.

According to (12) the output lasser power Pq (Tab. 1) has been determined
from the slopes of both dependences @ = \.Qu\ﬁov and @ = f(z) belonging
to the whole beam. We could not compare the values Py with those measured
directly, so we compared them with the experimental results shown in [4]
which we recalculated by (12) with respect to our conditions. From Tab. 1
it can be seen that both in this way determined values Py and Py, are iden-
tical within the accuracy of measurements.
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