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THE INFLUENCE OF THE COMPENSATION
ON THE DENSITY OF IMPURITY STATES AND THE ELECTRIC
CONDUCTIVITY OF CRYSTALLINE SEMICONDUCTORS
OF DOPED Ge AT HIGH CONCENTRATIONS OF THE DONORS

LUDOVIT HORNANSKY*, Bratislava

The approach of Matsubara and Kaneyoshi [1] to the calculation
of the impurity band conduetion and the density of states is applied in the
situation when diagonal matrix elements of the Hamiltonian have different
values, i.e. the potential energy of the electron is fluctuating from place
to place. By an approximate solution of the simplified model the influence
of the compensation on the density of the impurity states and the conduc-

, tivity at 0 °K are outlined.

1. INTRODUCTION

Allen and Adkins [2] report in their work that by doping germanium
and antimony at a low concentration of donors, a system of donors’ levels
with coupled states originates the energy of which is about 9.7 meV below
the conduction band. With a growing concentration, the overlap between
the adjacent states and the accidental position of the adjacent centres causes
the energy of the bound states to expand. After the addition of acceptors
into the sample, some donors will become ionized. Tonized donors and acceptors
(acceptors are all ionized), create Coulomb centres and cause relative great
changes in the energy of the adjacent states. This increases further the width
of the band. .

At low donor concentrations the conductivity is realized by a jump of elec-
trons from the occupied to the unoccupied donor state. Let us consider a semi-
conductor with Np donors and N4 acceptors, Np > N a (n-type). At a low
temperature, the acceptors will compensate N4 donors and consequently
the system will consist of N4 ionized donors, N4 ionized acceptors and N —
— N 4 electrons remaining in the donor states. If one of the Np — N4 donored
electrons is near to one of the N 4 vacant donored places, it can jump over
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to an accessible place, the jump being accompanied by the emission or the
absorption of a phonon. The electron cannot jump over to an already oceupied
Place, owing to a large electrostatic energy connected with a double occupation.
(The singly occupied states are separed from the doubly occupied ones by the
Hubbard energy gap). Miller and Abrahams [3] report in their work that
the concentration of donors, under which this model is convenient, is approx.
61016 cm3 at the n-type Ge and 2 x 1017 em~3 for the n-type of Si.

At a high concentration of donors, the owerlap between the adjacent donors
is becoming sufficiently great to enable the Mott-transition to metallic states.
Owing to the spin degeneration, the resulting band in the non-compensated
material is full only in the lower half, and the activated energy for conduction
is not required. Even if the states in the middle of the band will be metallic
ones, we can expect that the ones in tails, where the density of states is lower,
will still be localized. By an increasing compensation, the Fermi energy Kr
is moving towards the region of the localized states and the conduction at
a sufficiently great compensation will again require activation. At a very low
temperature when k7' is much lower than the width of the impurity band,
we can expect a transition from metallic conductivity to the “variable hopping
régime”, where the resistance in the temperature 7' dependence is expressed
by the relation of p = B exp (A/T1/4),

With a growing compensation random potentials will result, principally
from the ionized donors and acceptors, the consequence of which is an increase
of width of the impurity band. However the density of the states will decrease
and the final consequence is the increase of localization. States can then be lo-
calized in the Anderson sense.

The influence of the electron correlation, compensation, Ex position in the

-impurity band etc. on the impurit band conduction of the n-tvpe Ge, are
purisy purity yp

analyzed also by Matsubara and Toyozowa [4] (in the following  M-T').
They distinguish three basic regions of donor concentrations in which some
effects are- essential: the region of low concentrations (< 1016 cm~3), the
region of high concentrations (from 1017 cm=2 to 10'8 cm—3), and that of very
high concentrations (> 108 cm—3). .

In this work we will study the region of the “high concentration of dnnors”,
ie. Np will be between the intervals 1017 to 1018 of impurities in a sample
of 1 em3. As M-T state, it is possible to suppose in agreement with experimental
results that in this case in the n-type Ge, carriers move in the so-called im-
purity band without serious effects of correlation.
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IL. TAKING INTO ACCOUNT THE ACCEPTOR INFLUENCE

In solving the density of the impurity states problem and the metallic
conductivity in the donor band, we will use the work of Matsubara and
Kaneyoshi [1] as our starting point (in the following M-K only) as well
as the work of M-T. In their model, they neglect the influence of the conduc-
tivity band and the excited states of impurities. In the construction of the
Hamiltonian, the electron correlation and the spin of the electron are also
neglected.

The relevant factor for the determination of the state density and con-
ductivity is the accidental character of the impurities arrangement. As the
authors M-K and M-T themselves report, their approach enables them to view
the movement of carriers from donor to donor not as a separate elementary
process, but to consider the correlation with the preceding and the sub-
sequent junctions.

Let us suppose in the following part that the electron moves in the field
of charged centres (donors and acceptors) and in effective field of the rest
of electrons so that movement is considerably influenced only by the impu-
rity D, in the immediate environment of which the electron is situated, and the
nearest impurity of the adjacent impurity D. We neglect the action of the
rest of the impurities and electrons. The Hamiltonian H in a closer bond
approximation can be written in the following form

H=3 wuaan + 3> Vi . (1)
in} {m}#{n}
The matrix elements w, and Vm will be considered at most in a double-
centre approximation, ie. we are considering integrals having the atomic
functions and potentials centred at most on two different donors.

If we censider the wave functions @m of the basic state (1s state) and the
potential energy of the electron in the field of the donor centre VP or the
acceptor centre Vi, respectively, g, = (a3/1)12 exp (—ajr — By), VP =
= Volalr — Ri|)™, ¥4 = — Vo(—alr — By|)™ — where |Vo| is the double
of the ionized energy |Ky) (owing to the bottom of the conduction band)
of the electron in the 1s state described by the function ¢,,, a1 is the radius 1s
of the orbital, E; or R;, respectively, are the position vectors of the admixtured
ions — we can express the matrix elements wy, and V,,, in the form :

wa = Vo(1/2 + (@"YR — exp (—2Rja~1) (1 + a-3[R))) = Fo w(R) (2)
Von = Vo(3/2(1 + aR) exp (—aR) + (aR)*/6) oxp (—aR)),

where the sign is valid if in the distance R from the donor D there is a donor,
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and the — sign if the is an acceptor in the vicinity. The Fourrier coefficients
of the function development V.. Which we need in the following are:

Vie= Q5'64nVoad/(k? + a2) —
— Q5'32xVoas/(k? + a2)t | (3)

Let us denote by Np the number of donors in the system, by N4 the number
of acceptors, and by the quotient K = N,/Np we will understand the com-
pensation. Owing to a random distribution of impurities (we do not consider
any correlations between distributed donors and acceptors), and considering
the probability that in the nearest vicinity of the donor centre D there is an
acceptor or donor, we can write :

pa= N4/(Na + Np) = KJ(1 + K)
Pp=Np/(N4+ Np) = 1/(1 + K).

Let us consider the same system. of random by distributed impurities.
We can suppose that this system has Np different diagonal values Wy . Since
the distance of the nearest impurity from the given donor centre D may take
the value from the interval (0, ), the diagonal elements w, (2) take the values
from the interval (Eo — Vo, Ep + Vo). However, the distribution of the
diagonal values in this interval will be different for each system. (with the
same Np and N,). The part K/(1 + K) of these values belongs to the donors
with, adjacent acceptors. Consequently we get N pK/(1 + K) of different
diagonal values w, from the interval (B, E, — Vo), and N /(1 + K) of
different diagonal values from the interval (Bo, Eo -+ Vy). Let us suppose
further that the probability of finding the nearest vicinity at a distance
between R to R + dR is given by the approximation

D(R) AR = 47R2N" exp (—4nR3N'3) dR , (4)

where N’ = N, + N,; supposing the independence of the probabilities P(R)
and py, or p(R) and pp, respectively, for the probability of the realization
of the diagonal value w}(R) (donor vicinity)

W, (R) = Eo + w(R)
we can write
»* = pop(R) dR
and for the probability of finding the diagonal value w~(R) (acceptor vicinity)
wi(R) = Eo — w(R)

we have
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P~ = pap(R)dR .

Applying the results of the ¥ — K work, we can write for a disordered
system, like the one discussed above, the following system of equations:

E—By—ie=z+4V, e->0 (5)
%= Np(l + K)A(] dRp(R) (v — w(R)" + K [ dBp(R) (& - w(R)-1), (6)
0 0

where
V=3Vl —aV,)
k

and V; are the Fourrier coefficients of the matrix element V0. With the help
of the solution « of this system, we can express the density of the states and
the conductivity averaged over a random decomposition of admixtures.

III. SIMPLIFIED SOLUTION

In this part the simplified approximate solution of the problem is given —
the influence of the compensation on the course of the state density D(E)
and the conductivity ¢ at 7' = 0 °K.

Let us consider only the existence of two different diagonal values, wp and
w4, which correspond to the maximum function p(R) (4). If the maximum
is realized for R = R, from (2) it follows - .

wp = wy(B) = Ho +wo, wa=wy(F)="F, — wo,
whereby these values are realized with the probabilities
Po=1/(1+ K), ps=K/1+ K).

In accordance with results in remark [9], we get in this case, from the system
of equations (5), (6) the equation for «

(B — Ey — wvw —
— (B — Bo — V)Npja — wi — Npwo(l — K)/(1 + K)a) = 0. (7)

As it was stated above, in this case it is the question of the approximate-
solution of the problem. Therefore in order to simplify the analysis, we ap

Pproximate the function V7

V =mVo/(1 — aVit) — (m — 1)V, (8)
where m, t are constants, which we choose so that when K = 0, the width
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of the admixture band and the maximum D(E) should be the same as in the
work of M-T. For the sake of brevity let us denote y=1/(1— aVit), V1 =
= Ky, Q' = lom3, p = 32aNpa3Q;", 4 = t/m, B — [E — By +
+ Vo(m —1))/(—Vom), w = wo/(Vom), where Np is the total number of
donors in 1 cm? of the sample and V, is given by relation (3). By applying
these substances we get from (7) the equation for y: ,

¥+ 2B — (1 —pd)] +
+ B — B(2 — pA) — w? — wpd(1 — K)|(1 + K)] -+
+ (W — E'?) = 0. , (9)
From this equation it mozoﬁm‘.wou the width of the admixture band at K = 0
. AE — (—Voyam]/pd .
For the m.os.m;% of states we can write according to [9]
D(E) = (aN) Im(a27 + oN)
and the reduced-density of states D'(E)
D'(E) = —Voa3Q;'D(E) x 102
can be expressed with the help of y by relation
D'(B'y = (32n%)~! Im(1/y) x 102 , (10)

whereby we have omitted the other members, because their contribution
is considerably smaller that of the remaining one. In case of Ge we consider
a1l = 65 A°.

Let us .choose the donors concentration Np = 2.9 x 1017 cm—3, which

corresponds to p = 8; the values of f, m are {— 0.268855, m = 2.30186,
4 =0.116812. p4 = 0.934497. In Fig. 1, the dependence D'(E') at different
compensations of K is illustrated.

In the following we shall observe how far the conductivity depends on the
compensation of K at T = 0 °K. The Fermi energy Er at T' = 0 °K is specified

Er
by the equation [ d¥ D(E) = Np(l — K)/2, where we have considered the

spin degeneration and the fact that KN, electrons are captured by the
acceptors. ’

According to the work of M-K, M-T and others, for the conductivity
averaged over a random decomposition of impurities at 7' = 0 °K, we can
write
o(Er) = 2(ne?/3h) (5(Er)>

Q
i

(=]
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Fig. 1. Density of states as a function of energy (both in reduced units) for different

_stages of compensation. Numerical values attached to individual curves denote the

degree of the compensation K. Only the region of energies in which the compensation
considerably influences the density course of states is illustrated.

where for [9], in accordance with M-T' and M-K , (for a given concentration)
we can use the approximation written according to [9] in the following form

(EEr) = 223 13V o2 Im(ef/(1 — «V ), (11

where « is the solution of equation (7) for £ = Ep.

In order to determine the conductivity dependence ¢ from the compensa-
tion K, we have to determine {E(EF)). By comparing (11) with the expres-
sion &y in the work of M-T, it follows that we can write

3

2 3 2
(B = sam) S Tm B3+ T) 28 4 gy

31+ &) i Im(X)

-1
where we proceeded from the summation accross k to the integration for
ki €0, ©) and ¥, was approximated by the function w(k) = 327 Voad/
/(@? + k2)3; t; are the equation roots of X = (1 - &&w and X = 1(1 — y1),
with the imaginary part of possitive and y the solution of equation (9)
for £ = Ep. The dependence of the function L on the compensation K is
illustrated in Fig. 2, where L is given as L = g/(2e%a/h).
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Fig. 2. Conductivity L (in reduced units) as a function of the compensationK for
concentration of donors Np = 2.9 x 1017 em-3.

We should like to add a few remarks in connection with, the influence of the
compensation on conductivity. As stated by Mott [5], for a degenerated
electron gas in a random field at the temperature of 7' = 0 °K, there exists
a minimum of metallic conductivity, if Er lies on the “mobility edge” E..
He support his theoretical estimate by the work of Allen and Adkins [2]
and he uses their experimental results as a demonstration of the existence
of a minimum of metallic conductivity. He refers to the fact that the donor
concentration in Ge in the experiments in [2], is near the transition metal-
nonmetal and probably on the side of metallic conductivity. As asserted by Mott
[5]and Mott and Davis [6], a minimum metallic conductivity is realized when
the compensation K acquires the value at which the resistance ¢ is becoming
dependent on 7'. The results of work [2] are indicating that ¢ - oo for 7 — 0.
A characteristic behaviour of In g as a function of 1/7'/4 strongly supports
the idea that at 7 = 0 °K a certain discontinuity exists in ¢ with a compen-
sation growth, while the concentration of the donors is constant. The numerical
value of the minimum metallic conductivity, according to Mott [5], could
be obtained by comparing the results of Davis and Compton [7] with
the results of Fritzsche and Lark-Horovitz [8], reproduced by Mott
and Davis [6]. The results for oms give a value very close to 10 Q-1 em™1,
which belongs to the middle interdonor distance of approx. 100 A°. The con-
centration of donors in the examples cited in [8] was 2.5 X 1017 cm~3.
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1V. CONCLUSION

The course of the density of states in an impurity band for different compen-
sations illustrated in Fig. 1 indicates that the method of including the in-
fluence of acceptors agrees with, the theoretical assumptions. With a growing
compensation, in agreement with the assumptions, the impurity band is
extending and the maximum state density is decreasing. Results from Fig. 2
indicate that the proposed method of taking into account the compensation, al-
lows to eliminate the difference between the theoretical caleulation of the depen-
dence of ¢ on the compensation in work [4] and the results which follow from the
experiments quoted in work [2, 6, 7, 8]. From these works it follows that
at T - 0 °K, o decreases with the growth of compensation, while in work [4],
o increases with the growth of compensation to a maximum for a certain K
and then it decreases. From Fig. 2 it can be seen that in the first part of the
plot ¢ is monotonously decreasing, which does agree with the experiment.
In the second part of the plot, ¢ is no doubt growing, but this region is no
essential, because for a great value of K, Ep is getting into the regions of lo-
calized states and thus ¢ = 0. The transition to ¢ — 0 occurs by a jump

"at a certain critical value of compensation.
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