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B e U S .

NOTES ON THE TIME DEVELOPMENT
OF CLASSICAL QUANTITIES

PAVEL BONA*, Bratislava

A physical system is described by a C*-algebra of observables 9[ and,
in a certain GNS-representation 7u(A), by a one-parameter group of auto-
morphisms @, of the weak closure 7, (A)” of 70 (A) (a; is the group of time
development). A’ C*-subalgebra M (o, M — M) of the center 3 of m, (W”
is interpreted as the algebra, of »Macroseopic observables® (with respect
to the given family of states) of the quantum system 9. If w, when restricted
to the M, is an %-invariant state, the time development of »locally per-
turbed* states w,(x e A) on M can be described by a one-parameter group
of unitary operators U' in a coratin subspace of i, . If Ul = exp( —itHgy)
(strong continuity), the spectral properties of the generator Hgy determine -
the behaviour of Wy € FL(M) (= states on M) for ¢t - 0. It is shown,

L INTRODUCTION

In the quantum mechanical description of systems with infinitely many
degrees of freedom it is useful to identify observables of a system with elements
of an abstract C*-algebra U (i.e. a Banach Symmetric algebra with a norm
fulfilling |jx*z|| = [ll[% for all z € A). We shall assume that 9 has an identity.
Since every C*-algebra has a faithful *-representation in the algebra B ()
of all bounded operators in some Hilbert space 5, the C*-algebraic approach
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we U= (@) o) >0 (z e N); (1)
(@) ol + 1y) = o) + doly) (v, ye W, ieC);
(153) w(e) = 1 (e(e ) is the identity of .

(We denote by C the set of complex numbers and by R the reals). If z* = u,
w e L (W), then w(x)eR and the number o(z) is interpreted as the mean
value of the observable z € 9 in the state o, Each state w € S (N) generates
canonically a cyclic *-representation 7o(A) of the algebra A in a Hilbert
space H#,, called the GNS-representation (due to Gelfand, Najmark
and Segal) and denoted by (#w, 7w, £,). The eyclic vector &, e 5,
(ie., my (A&, is norm-dense in H'p) is such that

() = (bo, Ta(z)és)  forall ze 9. (2)

The property (2) determines the cyclic representation uniquely (up to the
unitary equivalence). v

Anarbitrary normed vector £ € #°, definesa vector state wg(x) = (&, mp =) £),
wg € (W), in the representation (o, 7w, &n). With some freedom of ex-
pression we can consider w; as a state on B(H w), wg(B) = (&, BE) for all
B e B(#)n). As a consequence of the finite Precision in experiments we are
not able to distinguish experimentally quantities in () (by Eomm:nmgwm;m
in given states w;, & € #,) from other »>weakly-infinitely nearby* quantities
described by operators in the operator-weak closure of (M) in B(H,).
This leads us to define the “observables in the representation (#,, 7y, &,)”
by all selfadjoint operators of the von Neumann algebra (or the W*-algebra)
7o(A). (We denote by R’ the commutant and by 9" the bicommutant of
N < B(o#), in B# ).) Similar considerations for states generate the
concept of the “physical equivalence” of representations (compare [1]).
The center 3, = 7z,(N)" N 7Zo(A)' of 7y(A)” is a commutative W+-algebra
containing all such observables (in the representation m,) which commute
with, all other observables. The observables in 3o are “classical observables”
of the system U in the representation 7, (or, equivalently, in the set of all
states in co {we | & € #,}, where the closure of the convex hull is taken in the
Uoﬁb&owﬁom% of the dual space A* of U, with the norm IIfll = sup |f(z)]

ll=1, ze
for feA*). If n,(A) is an irreducible representation, then ()" H.&@Nev
and the centre 3, = {il #.,|A€C} is trivial. One can see from this, that
in physical systems with finite number of degrees of freedom there are no
nontrivial classical observables, which is the case of the conventional non-

relativistic quantum mechanics. . o
. The algebra of observables is usually constructed (in the case of an infinite
number of degrees of freedom) as the O*-inductive limit of the net of algebras
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mmmow.:&:m finite systems (see e.g.[5, 11}). If for eacha el (Iis a directed index
set) there is an algebra 9, describing a finite system and Ay < Ny for o < B,
ly = 15 (14 is an identity of ) for all «, p €1, then the C*-inductive limit 9
of the net {U,, « €I} may be considered as the norm-closure of the union
of all A,: .

A= s, Uy = “local algebras” (« e I) (3)

ael

Thus e.g. Ay describes s gas of the particles with hard cores in the finite vo-
lume Vg and V, < Vs iff « < B. The algebra U constructed vig, (3) from the
“local algebras” 9, is called the algebra of quasi-local observables. The time
development of elements in 9 is then obtained by a certain limiting procedurs
from the known time-developments in 9, (xel) (see, e.g., [2]). The obtained
development of % need not be an automorphism .mao:w of U even if the time
development in each Uy is described by a oneparameter group of *-aguto-
morphisms. We can describe in many cpses the time development of 9 in some
representation z,(%) by a group of automorphisms of the W*-algebra
7a(A)", [2]. In the latter case the time development of the vector state oy
(if extended to ,()") is .

W) = (£, afoma(2) &),  Eet,, ved, (@)
where o € aut 7,(%)” for ¢ e R, afoaf) = oo,

The vector states w; with £ — 7w (2)éu(x € M) are called “local perturbations
of »” and we denote them by wz:

DoY) = (@o@)n, Wo(y2)bw), (lmw(@)Ea| = Lz, yeN). G

The name “local perturbation” for w, comes from the case of the quasilocal
algebra A (3). .

The state w is tinvariant if @, = woo; =  for all e R. The equilibrium
states in the statistical Physics constructed on the basis of the ergodic hypo-
thesis by the time averaging are {-invariant. However, macroscopic quantities
are mainly interesting from the thermodynamical point of view (or, more
generally, from the point of view of some useful deseription of global charac-
teristics of big systems). Since the relative fluctuations of (almost) all physi-
cally significant macroscopic quantities tend to zero in the thermodynamical
limit of big systems, it is natural to suppose that bounded macroscopic quan-
tities are constant in time in the equilibrium, state of a big system. Such
a characterization of the equilibrium is less dependent on the ergodic hypo-
thesis than the usual one is. If the subalgebra P(< A) of the “macroscopic
quantities” is known (it might be dependent on the representation m, and,
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in that case, M < 7u(A)") and if a time-developed macroscopic quantity
JIs again a macroscopic one: oM = M, we can define the macroscopically
(M) — t-invariant state w e L(A):

w € F(N) is M-t-invariant iff (0 2) = w(z)for all x cIN, (6)
teR.

Definition (6) of the macroscopic {-invariance of the state seems to be useful
from the point of view of the physical kinetics: the limit of wyz) for ¢ — o0
need not exist for all z e 9[ (vesp. for all z € n,(A)") but it might exist for

zeMW: lim w; = & € S(M). The eoxistence of the state @ on 9 is sufficient
>

to determine macroscopic properties of the system in the limit ¢ — co.

In the present paper we are intersted in the existence of the limits w and
in the speed of convergence of @;—> & (t-> o) for “partial states” on M
(for the notion of partial states and for a relevant discusion see [19]). The state
W= is supposed to be a local perturbation of some 9i-t-invariant state g, .
We shall work in a fixed cyclic representation (¢, x, &o) of U all the time.
Thus, we can (and we shall) write 9 instead of #(A), so that A < B(H#)
and the center 3, = 3 = A’ N Y~ (commutants A’ and A" = (Y'Y’ are taken
in B(#’)). We shall further assume that M = 3 M is a C*-algebra), i.e., that
“macroscopic quantities” are classical ones commuting with all ovm.mgm_o_om.
It is known, that in infinite systems described by quasilocal algebras macro-
scopic quantities belong to the “observables at infinity” [3], which in turn
belong to the center 3 [4]. The assumption o9 — M is both natural and
useful for further considerationsl. Now we arrive at the problem of the con-
vergence of states wow = w; (for ¢ — ) of the classical system described
by the commutative C*-algebra, M and the one-parameter group of *-auto-
morphisms «; € aut M (all the automorphisms dealt with further on are
*-automorphisms).

In Sec. II. a connection is formulated between the time development in 9"
and that in IR. We shall derive there some conditions for the existence of
lim w, e SOM). In the proposition IT. 5. it is shown that the group «, € aut M
1->a0

cannot be “too continuous’ (we mean here the continuity of ¢ —  (ozx) for
all z e M” and all o € #(IN")) if it should not be trivial (i-e. o = 1). Further
conditions on «; are formulated in terms of spectral properties of the generator
of time development if «, is unitarily implemented. ‘ :
Sec. ITI. contains a list and a brief discussion of some further conditions
of the nontriviality of «,. The proposition III. 1. is interesting from the point

! In the following we denote restrictions of mappings a;, o, ... by the same symbols
as the respective mappings defined on a bigger algebra.
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Hamiltonian, but a Liouville operator. The then following proposition shows
that the nontriviality of o, presupposes |z — 1f| = 2. For the main parts
of proofs in this Section we refer the reader to the literature.

The relation between the speed of the convergence w; > & (for t—o0)
and the spectral Properties of the generator of time development is investigated
in Sec. IV. Speaking loosely, the better the analytic Properties of the spectral
easure of the generator are, the faster is the convergence. An example
is given of a freely moving classical particle on a finite closed curve.

The concluding note (Sec. V.) deals with the possible application of the
formalism to the quantum theory of measurement,

II. THE MACROSCOPIC SUBSYSTEM OF A QUANTUM SYSTEM

The interpretation of the subsequent considerations ought to be understood
according to the previous Section. Let U be a C*-algebra of operators of
‘a Hilbert space 5, 9 < B(H#), with a, cyclic vector &, €, ie., Uk, = H.
Let M<3 (3=un A’) be a C*-subalgebra of 91", Le e MYA > 1,,).
Suppose that a; € aut A" is such a one-parameter group that

(@) M is a-invariant : o A mmS. VieR, YA e,

(b) the state w(z) = (%, wto) (z € A) is M-t-invariant, ie. w(d) = w(d)
for all 4 eI and all teR;

(c) the functions ¢ - (xbo, (oxd)aky) are continuous mappings of R to C
for all z € U and all 4 9.

The selfadjoint operators from N are Iinterpreted as “macroscopic quanti-
ties of the system (this definition is, in general, representation-dependent).
The local perturbations of ¢ are the states w,(y) = (xbo, yz&o) (by |lx&ol = 1),
for arbitrary z € 9. Let P be the projector on the subspace Mg, = P# < #
and [4, Bl = AB — B4 (4, B e B(#)).

II.1. Lemma. [P, A} = 0 for all 4 eI

Proof. The function §—>AE (e #) is continuous in 3, P# is closed,
Méo is dense in P (all in the norm-topology of 5#) and A9 < M for 4 e M.
From this we have PAPE = APE, VEe o7, ie., PAP = AP. From this we get
for 4* = 4 by conjugation the result, q.e.d.




Hence PP = PO is a*-representation of M in #y, = P# with the
cyclic vector &. Since 3 = 3", wehave M" = Jand P e’ implies I}" < {P}
Clearly 9"z, — #p. It follows from this that PIN" is a cyclic representation
of M” in . The next lemma, implies a-invariance of " : o € aut P,

IL. 2. Lemma. Let % be a cyclic (in general noncommutative) C*-sub-
algebra of B(#), N> 1 », With the cyclic vector & e # and « € aut S such
that (&, axo) = (&, x&o) for all z e 9. Then there is a unique ¢-continuous
*-isomorphism & of R” into B(H'), the restriction of which to 9 is «, & € aut N”
and & js unitarily implementable: ax — UgeUy (UXUs = UU* = 1,
zeN"). (The o-continuity means the continuity in o(B(#), B(H#),) topo-
logy, see [5—8]). :

Proof. The isometric mapping U; : Néo > Ny defined by Uzéy = axko
is linear and its extension to 5 is unitary. Then ax — UfzUyx e N) and
Uabo = & . The operator U, defines a a-continuous *-automorphism of B(#).
If & = UzU, (xeN"), then a” is a W¥*-algebra containing 9%, so that
N < aN" = UN"'U, and UN'Uy < N". Since U,, = Uy and the previous
considerations are equally valid for &1 (instead of &), we have also N =
S @R = UN"U¥, hence afN” — N” and & eaut N’. The uniqueness of &
follows from the o-continuity and from the fact that 9 is o-dense in N, q.ed.

The restriction of the state w(x) = (£, &) to M” is an o-invariant state
€ L(IM"). The assumption (c) above implies that in K, o € aut Mis :b?@u:.%
implementable by a weakly (equivalently strongly) continuous group of uni-
tary operators Ug, : Pud = Usid Ulp.

IL. 3. Lemma. Let 9 be a cyclic C*-algebra in 5 with the cyclic vector
foest and o caut N is such a one-parameter group that the functions
L= (zho, (my)xdy), for all x, y €M, are continuous and the state we,(z) =
= (o, 2&) is oy-invariant on N. Then ax = U~txUt for all z € N, where &
is the extension of a; to N” according to IT. 2. and U¢ is weakly continuous:
Ut = exp (—itH), H* — H e () (= the set of all linear operators in ).

Proof. It suffices to prove the continuity of Ut. The functions ¢ i I = —
— Dabol? = [[(U-taUr —a)gl2 = (&, x(x*@)bo) — (bo, (wa*)xky) + (&,
z*xko) — (&, x*ky) are continuous (by polarization) for all z N, and N&,
is dense in . Since |[U-t — 1l < 2, all functions ¢+ |[(Ut — 1)g] (for all
& € ) are continuous, and this means that Ut is strongly continuous, q.ed.

Applying I1. 3. to the algebra. P in #y;, we see that

wz(d) = (2t Ui A&) for allze¥ (7)
‘ and all 4 e "

are continuous functions of ¢, Ugt = exp (itHy,) and Hy is a mmﬂm@&o”ﬂsn
operator in #’y. The group «, € aut A” need not have such good continuity

8

properties (A" € B(#), # - Hg). Since ULl — P)=0, U is a group
of partial isometries in » which is unitary in Hog.

II. 4. Remark. Suppose oz = U211t for all ze¥W", teR. We have
PU—t40tP — UgtdUl, forall 4 e M. a-invariance of Pp” implies [P, W¢] = 0,
VeeR. Then P4 — WURAUGU. Set Pt = UUg. Cleatly Vtegy,
PUt = ViU, Unitary operators V¢ do not form (in general) a one-parameter
group; V' form a group in the case of [U", Us] = 0 for all t1, ¢ € R. The time
evolution of the vector states wg (& € ) on A” can be expressed by we(opz) =
= (& Uzl Ve aViUgLE), x e N”. Since Pt commutes with MM, the formula

PW = VUG # y, = Potr)

can be understood as 3 separation of the “macroscopic time development’’
from the total (i.e. “microscopic™) one. If wg, is not the w-invariant state
on € #(A"), then Vegy & &.

The continuity of all the functions in (7) implies the seemingly stronger
Property, namely ar,m continuity of all functions

P pu(d) = p(wd),  forall pe FW), 4 ey (8)

where (M), = co {wg | £€ # )} (= the norm closure of the convex hull
of {...} in the dual space (IN")* of M") is the set of all normal states on the
W*-algebra, " (compare [5, 6, 11]). One might be interested in knowing
whether it is possible to.change S#(M"),, by (") in (8). The answer is con.
tained in

I1. 5. Huaowoﬂ?.os. Let MM be a commutative W*-algebra and Iet a e
€aut I be ‘a one-parameter group. If functions £+ p(ad) are continuous
for all 4 €M and all pure states ¢ on 9N, then o; = 1 for all eR (ie., o is
trivial),

Proof. A commutative W*-algebra, M — C(X) = the space of all con-
tinous functions on g Stonean space X, 5] (a Stonean Space is a compact .
Hausdorff space in which the closure of every open set is open). States on Mt
are determined by probabilistic Radon measures on X:

©@) = [2() duo(t), wePM), ze O(%).

- g . , .
The atomic (or Dirac) measures §, correspond to pure states, i.e. pure states
are in a one to one correspondence with points of X and for a pure state
w.(t€ X) we have w(z) = 2(:) for all z € M(x(c) is the function from C(X)
which corresponds to z e ). An automorphism « e aut 9 determines the
transformation «* of the “spectrum space” X onto itself by .

ox(e) = x(a*s).




is contained in the connected component of ; e X. Since X is Stonean, the
commected component of ¢ veduces to the one-point set { < X and o* =
for all € R. This implies () = #(t), oz = x for all & €M and allteR, q.e.d.

The strong continuity of 4, ie., lim || gz — || = 0 for all z €It implies

. -0
the continuity of all () in teR (w e L), zeM):

lo(ogez) — o(0x)| < lotgr gz — #lf > 0 for ¢’ - ¢.

As a consequence of II. 5. we see that the nontrivial group oyt e R) of auto-
morphisms of g commutative W*.algebra, is strongly discontinuous.

The existence of a nontrivial group o € aut M” which is weakly continuous
on all normal states of g commutative W*-algebra " in the sense of the
continuity in (8) follows from the existence of nontrivial motion in classical
mechanics. In the next simple example this is Proved in details.

II. 6. An example. The classical linear harmonic oscillator with the
Hamiltonian # (9, p) == p2 L ¢? (frequency o — 2) is described by a C*-al-
gebra M of all bounded continuous complex-valued functions (z) on the
complex plane C(a2) tending to a finite limit for 2> o0; we identify wmz.w
2 =q—ip (M is the algebra of all continuous functions on the compact space
C=cvU (@), i.e., on the complex plane compactified by adjoining a one-point
in the usual manner). The Hamiltonian A (¢-P) = |2]2 is not an observable
here (since H ¢ ), but e.g., tanh H e M. The time development is described
by the group :

xx(z) = x(ei2tz), zeil, zeC.

Probabilistic Radon measures u,(z) on C determine the states w € (M),
and «-invariant measureg bo (i.e. measures invariant with respect to all
rotations of C around the point z = ) correspond to gp-invariant states
@ = weay. Thus e.g., the Gibbs state w; with the temperature 17 — 1 cop-
responds to the o-invariant measure #1, du(z) = Yme—la® g, {here dz =
= dg dp). The Gibbs state is, moreover, a faithful state: wiz) = 0 (z > 0)
implies z = 0 (z €IN). The GNS-representation corresponding to this state
is a faithful one. The Hilbert Space 5, of this representation is Hy = L2%(C, )
and the cyclic vector &1 is described by the constant function £(z) = 1. For
Z, y € M the function
+
1 ai@ay) = [ a(@)y(eiz) duy(z)
C
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are continuous and the algebra 7;(IM) fulfils the above mentioned conditions
(@)—(c). Hence %; can be extended to & e aut (IM)" and for all ¢ € L(m(M)"),
the functions o(ax) (x € m(IM)") are continuous functions of teR. It is clear
that & % 1. One can also prove ()" = L=(C, uy), since o is clearly
a W*-algebra containing m(M) and the cyclicity of z, implies that 7 ()"
is maximal commutative in B(s#1), [5] (2.9.4.).

Let Hy, be the generator of o; in the Tepresentation PIR in s¢,, Poy 4 —
= UgdUt,, U = exp (—itHy), HY = Hy,. The properties of functions

> wg(aA) are dependent on the spectral properties of Hy, (compare also (7).

The #-invariance of @ = wg, € S(M) implies Hyéo = 0, hence the point
Spectrum of Hgy, is not empty. Let P, be the Projector in Hy, on the subspace
Hp = »# 3 generated by all eigenvectors of Hgy, and let P, (< Py)be the
Projector on the subspace of all eigenvectors of Hy, with the eigenvalue equal
to zero. Then [Py, UGl = [P,, ml=0forallteRr. Let B(2) = E((—o0, 1))
(A €R) be the spectral measure of Hy,: N

Hy = [ 24dE(), EQR) = E(1 + o). (10)
R

The limits in (10) are understood in the strong operator topology in B(H ). -
The point spectrum Sp (PpHgy,) of Hgy, consists of all points 1 € R in which E(3)
is discontinuous. In g general case sp (PpHy) is an arbitrary part of R, eg.,
it might be dense in R, or (in the nonseparable 5#y,) it might contain intervals
Or even it might coincide with R. The projector P =15 —p, commutes
with U%, and the spectral mesaure P.EQ) of P, m 18 continuous on R This
continuous part of E(3) can be decomposed into the absolutely continuous
Ppart (with the projector P,,) and the singular continuous one (with. the projec-
tor Pg). This decomposition is characterized by the continuity properties
of the measure (&, P Ei)E) (resp. (&, Py B(A)E) = 0). For an arbitrary £ ¢ o7
this measure is absolutely continuous (resp. ‘singularly continuous) on R
(with respect to the Lebesgue measure m). Moreover, [P,, s B(A)] = [Py, E()=
=0,Ps + P, — P, and the Hilbert Space is the orthogonal sum bof the three
subspaces: Hm = Hp @ Hse ® Hqe (Where Hoy = Pp# o for n — P, sc, ac),
[10] (X.§1.2.).

Suppose that lim @A) exists for all 4 ¢ IR. This means, according to (7)

{>+4a0

and sy, = 9NE,, that

w — lim Ubatzg, — P7 € Mgy (11)
[ ]

exists, since the norm UG a*wk)| = 1Pr*xgy|| is uniformly bounded in teR.
Put ¢, = Pr*zEy. The vector @, in (11) is Qms-::\mlmsp ie. s.wmﬁo\a\ms.

11




1L 7. Lemma. The hecessary and sufficient conditions for the existence
of the
w — lim Uk = gHp e H#)
>4
is
w — lim Ug(P — Py)p = 0.

£+

If the last condition is fulfilled, then ¢+ — Pog.

Proof. Ul = wPyp = UgnPop + Uly(P — Po)p = Pop + UL(P — Po)o,

hence the necessary and sufficient condition for the existence of w — lim Uk
{>+0

is the existence of w — lim Up(P — Poyp = %1 Since the subspace (P — Po)o#
t>+00

is Uy — invariant and closed in the weak topology in H, gf € (P — Po)#.
However, ULgt = @1 implies ¢! € Pos#, hence P71 = 0 if ¢} exists, q.e.d.

The lemma shows that @F = Pogy in (11). If (Py — Py)e+0 for a te s,
then there is some Ene g, : Hypby = dpba(dy + 0) such that (&, (Pp—Py)§) =
*+ 0 and (&, UL(P — Po)g) = et (g, (P — Po)¢) and UL¢ does not con-
verge for ¢ > 0. Thus we have ; _

II. 8. Lemma. Tme hecessary condition for the existence of

=w—limUse (be)is (Py — Po)€ = 0.
{->+o0

Combining IT. 7. and II. g, we get

II. 9. Proposition. The limit w — lim ULk (= Peé, EeH) exists if the
% & .
conditions (i) (P, — Po)é =0, (i) w-lim UtP,g — ¢ are fulfilled simulta-

{»m
neously. The vectors £ c satisfying (¢) and (i4) form a Uy — invariant
subspace of # which is the same for £ - + oo as that for t > — oo,

Proof. The first part of I1. 9. has been proved above. Since the operations in
{¢) and (4%) are norm-continuous and linear, vectors satisfying both conditions
fori > + o (resp. for ¢ — 00) form the closed mﬁvmvmom P o# (resp. Nuwav
of #. For § € Po# and 7 € the limit lim (y, wE) = lim (¢, U&m) = lim

{>-0 t>+400 {>+c0

(P1&, Upm) = lim (&, UnP,n) exists. Hence also £ € P_s#. Changing the role
t->+4c0
of 4 and — we get P, = P_| qed.
This proposition implies lim wzloyd) = lim wy(ad) = @5(A4) if one of these
>+ -0 |

limits exists. If Py is one-dimensional and z is such an element of 4 that
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@z = Pr*zg, € P.o#, then @, —= W& = we F(IN) and the state o is stable
with respect to such preturbations. The state « is ergodic (i.e. extremal

- a-invariant) in the case dim Py = 1, the only constants of motion in MW"

T
are the elements Algy(A € C) and the mean lim 7 ©{AuB) dt = o(4)w(B)

T 0
for all 4, Begp (compare e.g. [11] (Theorem II. 2. 8)).
In the case of dim Py > 2 Jocal perturbations w, of the state ¢ might tend
in the limit ¢ - co o @z + o for some z € 9.

IIL. SOME RESTRICTIONS ON THE TIME DEVELOPMENT

The intuitively acceptable condition of the continuity of functions ¢ -»
- w(A) for all © € (M) and all elements 4 of & commutative W*-algebra,
M leads to the trivial 8roup «; = 1(fe R) (compare II. 5.). We shall give
now some further necessary conditions of non-triviality of the group o; € aut I
in the case of a commutative C*-algebra IN.

III. 1. Proposition. Let 9 be a commutative W*.-algebra of operators
in a Hilbert space H,IM < B(+#) and let ayz = exp (ith)x exp (—ith) be a one
barameter group of automorphisms of M(h* = ¢ L(H#), te R). If the spec-
trum of % is (at least) one-sidedly bounded, then o = 1(teR).

Proof. According to (6] (4. 1. 15) (the Borchers theorem) if % is lower
bounded, then o is a group of inner automorphisms: = 'z, (u, € M,
% % = 1forallteR). In the case of commutative I this implies % =1,q.ed.

We have seen above that a unitarily implementable one-parameter group
of automorphisms of a C*-algebra M(s le) In B(#) is extendable to the
unitarily implementable group & € aut M" of the weak closure of 9. Since "
is commutative if 9 is, the nontrivial automorphic group o, of a commuta.-
tive C*-subalgebra M of B(H’), which is unitarily implemented by a weakly
continuous group of unitary operators exp (—ith) cannot have a generator A
bounded from any side. Hence, the connection of % and the Hamiltonian

= energy operator) is more complicated in general as it is in conventional
quantum mechanics. The next, example of a classical system with one degree
of freedom illustrates the situation. A

IIL. 2. An example. Let w be an ap-invariant state of the system from
I1. 6. The Hamiltonian is H(q, p)=q2+p2 = 2% (z = g —ip). An x-invariant
measure u, on C corresponds to the state w. 7, (o) = XP (ith)ny(x) exp (—ith)
in the GNS-representation (o, (M), &,) as a consequence of the continuity
properties of o, and the o-invariance of ¢ e FL(M). Here M = C(C), #yp =
= I2(C, p,) and ¢u(z) = 1 e L2(C, Ho). If we write 2 = lzlel?, then n,(z) =
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= %0 € L™(C, uy) is a function Zo(lz], @) (@eM) and (@@)o(lzl, @) = 24(f2],
¢ + 2t). The generator % can be written in the form

»

The generator of time development is the Liouville operator also in some
noncommutative caseg: :

IIL 3. Remark. Let A be a W*-algebra in a Hilbert space 5, W = Y”
in B(H#). Let ayzr — exp (itH)z exp (—itH ) be a one parameter group of auto-
morphisms of Az € 9, F+ — H e £(s#)). Let w € #(A), be a faithful normal
o-invariant state, i.e., o(@*zr) = 0 implies z — ¢ (@e), we; =w and
o(x) = Tre(o®a) (x e, o@ is the corresponding density matrix). The GNS-
representation (Hw, 7w (), mvv is a faithful representation with the joint.
cyclic and separating vector éw. Let us denote To(x)Ey = ZolreM), 1, = &,.
In this Tepresentation m,(a,z) — exp (ith(w))7wo(x) exp (—ith,), N@Nv =l €
€ L(H#,), €xXp (ithw))ly = 1,. Then (*w, exp (th)yo) = (xa, (y)w) =
= %w*@@&*o:mw\m::mv. The algebra 9 is embedded by the linear injective
mapping « ->z, in the Hilbert space ', and the operator k) is in fact
the Liouville operator L defined usually on the Hilbert space of Hilbert
Schmidt operators by eltly = githye-itn (x € Hilbert Schmidt ideal in B(H#)).
IfHis one-sidedly bounded, then according to the Borchers theorem (see e.g.[5]
(4. 1. 15)) we have exp (itH) e 9 and

(%o, exp (ith))yw) = SA&*QE@mLEV :

In proving wo_m@&ombgamm of h(y) one uses o-invaFiance of w. If the state o
is tracial (i.e. ©(*y) = o(yz)) and the group of automorphisms is inner, it is
not necessary to Suppose the «-invariance of -

(%), (ey)n) = w(etHg*ye—ii) — S?*S = (20, yo)

and the 3-5¢mi@b$ of w follows.
The situation is particularly simple in the case of the bounded Hamiltonian,
HeB(#):He Ao is inner) and Lo — [H, z], since

w0

e o]
C(it)n (ig)»
eltly —— Lngy — —[H, ] = eitHyg—ity
n! n! . ’
n=0 .

n=0
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where both the series converge in the horm-topology of B(#), and [4, B)jmw =
= [4,[4, Bj»D], (4, Bjo = B.

The above mentioned case of the tracial state o leads to the time evolution
of the perturbed states @z expressed by

@) = 0(@¥(ay)e) = w@r*(ay)) = (@*2), ey, .

The analysis of the convergence of wz(ayy) for ¢ — oo can be carried out in the
same way as in the commutative case,

We have seen in IL 5. that the group a; can not be “very continuous’”
to be nontrivial, The next proposition gives further Testrictions on the con-
tinuity properties of a nontrivial group of automorphisms of a commutative
C*-algebra. .

II1. 4. Proposition. Let M be a commutative C*-algebra and « € aut M.
If Jlo — 1)) < 2, then o = 1.

Proof. The assertion is -contained in [12] (Lemma 4): If Me Br) is
a (*-algebra and lle — 1]l < 2, then there is an extension &€ aut P’ of «
leaving all elements of the centre of MM” fixed. In the cage of commutative I,
I is contained in the centre of M” and & — 1, q.e.d.

If qyeautM (te R) is a group, then floct, — o f| = lloct,~¢, — 1]| and
flote — 1| << 2 implies |lagy1q, — af| = llog, — 1) = 0, ie., the Periodicity-
of & : a4y, = o for all ¢ € R. Phrasing this in a different way we have

IIT. 5. Corollary. If {,eR is not a period of a one-parameter group
% of *-automorphisms of a commutative C*-algebra, then llog, — 1) = 2.

An immediate consequence of the preceding considerations is the norm-
discontinuity of a nontrivial group «; on a commutative C*-algebra. According.
to II. 5. a nontrivial group o ((eR) of automorphisms of g commutative
W*-algebra, is even strongly discontinuous.

IV. THE RATE OF DECAY AND THE SPECTRAL PROPERTIES
‘ CF GENERATORS

We shall use the notation from Sec. II. The Properties (a)—(c) of «, are:
supposed to be valid. Since only the component (P, + Po)ps contributes
to the convergent ogeed) = (@,, Ugidéo) (4 €M, t—> o0) and UtPop, =
= Pops, We can restrict our subsequent considerations to the subspace 7, =
= Pedtl < #Hgy. Let us. denote Ui = P,U, exp (—itH.), H, = [ 2 dE,.(2)

R

and E.(1) = PE(2) € B(#,). Thus Ee(A + 0) = B, — 0) for all 1eR.
Writing o, — Hae ® Hs, the measure #o(4) = (¢, E(A)p) on R with ¢ € 57,
(resp. ¢ € #,) is absolutely continuous (resp. singular continuous) withrespect to-
the Lebesgue measure . (A finite measure # on R is singular iff there is M <

i
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< R, m(M) = Oandu(M) = u(R) + 0). We shall show how smoothness proper-

ties of po(2) determine the behaviour of folt) = | eita dug(2) for |t| - oo. Let
R
us start with the reversed connection.

Iv. 1. Proposition. Let u(t) = [ eita du(2), where u is a probabilistic
. - R®
Radon measure on R, If
(1] = 0O(|t|-7) for [tf>o00,y >p>1 (p integer),
then u(l) e C7(R) (= functions with the bounded continuous p-th derivative

deu(2)
on R and im —— __ ¢ =1
: Moo dAg re=5L2p.

Proof. .mS.lvo (t - o0) implies continuity of u(i). The inverse Fourier
transform of z gives [13] (p. 27. pp. 85—87)

1 1 — e—iat

) — u(0) =—| .
#(2) — p(0) o | #® %
R

The continuity and the behaviour for t—> o of 4 leads to [ |P-17(t) dt < 0,
R

de.

- - . - ‘
which, implies the existence of derivatives u@ (1) = -Q.J pd) =
: die
D s d .
- 4Ly (t)e—itr Jg =
o u(t)e mﬂ.m 1,2,..p.
R

The continuity and the convergence to zero (for || -> o) of 1@ follow from
the known properties of the Fourier transforms of integrable functions, q.e.d.

The mmlwme?m of a singular function is not continuous and the convergence
(if any) of g4 (t) (p e Hse) for t - oo is very slow. For ¢ € 5#,, we have

dug(4) di

to(t) = | eitd
Mo(t) di

(12)

The last formula implies z14(t) ~> 0 for [t = oo for all ¢ € #,, and by polari-
zation we get . : :

lim (¢, Ukw) = 0 for PEH e, pEH.

ft|>w
Hence P, < P.(= P_). We are interested in the speed of the convergence
of (¢, Uly) (p € #4,) for £ — o0. For the polynomial decrease we have

Iv. w Proposition. If the probabilistic Radon measure 4(2) on R has

ﬁ.ro m-integrable continuous p-th derivative u® on R (» =1, integer) and
lim p@(3) = 0 for ¢ =1, g, o P — 1, then [u(f)] = o(|t]-»+1) for 8] - co.

[%] 00
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. b
Proof. Put J, (a, b; ¢) = [ eltu@(3) di. For |a| + [b] < o0 and an integer

g <P (g > 0), Jgis a continuous function of ¢ and lim Jg = 0. Put J(t) =

|t >0

= lim Jg (@, b; t), if the limit exists. Clearly J,(t) = \ms. Integration

win(-a,b)->+0

per partes in J, gives
1 i

Jola, b; §) = l.“,?é.:sév — elaty(@(a)] +M Jot1 (@, b; 8) for g=1, 2, ...,
1

p— 1

In the limit - 4 o0, @ » — 0 we get
i, ;
Jo(t) = M,:zs forg=1,2,...,p—1, (13)

sifice u4@(4-c0) = 0 and Ji(t) exists. By repeated using of (13) we get

A Atan

wit) = Ju(t) = T Ilt) . (14)
Since u® e LY(R, m), J,(t) - 0 for {t| = 0o and (14) gives the wanted result,
g.e.d. .
The better the analytic properties of p(2) are, the faster is the convergence
4() ~ 0 (|t| - o0). For the exponential “decay law’’ we have

IV. 3. Proposition. Let #(4) be a complex Radon measure on R and

dufdA = F(4) for 1eR. Let F(z) be an analytic function in the region —v; <
< Imz < v (v > 0) and let

JIFG +i0)2d2 < C < o0 for —9; < o < Vg .
R

N

Then (i) |u(t)] = o(e*™) for t - —eo,
(i3) |u(t)] = o(e ™) for t > +-0.

Proof. According to [14] (Theorem IV.) there is a function g(t) which is
a Fourier transform of F(1) and satisfies (i) and (it) (after the replacement
of ¢ by g). From the continuity of du/d4, |u(R)| < o and the Plancherel theorem
we have u =g (m-a.e.). The result is then a consequence of the continuity
of u(t), q.e.d. .

It is clear from the proofs of the propositions IV. 1.—1IV. 2. that they are
also valid for complex measures u with a finite total variation. Hence, we can
apply them to the measures of the form u(2) = (p, E(A)yy), @, w € #. In this
case u(f) = (p, Uj'y). Propositions give the wanted connection between
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the “‘smoothness Properties” of (g,, E(2)A4%) and the speed of the convergence
of wy(aA4) for ¢ -5 + o (e, AeI < 3@ ). .
The next simple example of classical system illustrates the transition
from the perturbed ¢-invariant state w, to another f-invariant state By =
= lim wyo0, (4 w, in general).
>

IV.4. An exXample. Let the physical system we want to describe here
be a classical freely moving point particle on the unit circle, The Hamiltonian

measures on S X R. The time development ig described by a group «; € aut an,

(o] (g, p) = 2(g + Pl p) (€M, 2(g 4 27, p) = x(q, p)).
Forwe FL (M) we have

0@ = [ o) dua(s), £= (¢ p).
SxR
Continuity of z(£) implies continuity of ¢4 o(xz) for all e &L (M) and all

z e IN. If the Support of an a;-invariant measure yg is § x {po} (po € R), then
the perturbed states depend periodically on ¢ with the period At = 2n/p,.

(compare the generator in IIT. 2). Although, in the general case of an o-in-
variant state w we can get an aperiodical time development. Let ko beanm-a.c.

o) = [ 2(q, p)ulq, p) dg dp, 4’ € LS X R, m). (15)

SxR

For wea; = o we have #olg — pt, P)=4,(g, p) (m-a.6.) and we can choose . in-
pendent on ¢. Then

V(oY) = [12%2) (q, pYy(q + pt, )t (p) dgdp =
= | Ielg — 2t p)tylg, p)ul(p) dg dp (16)

SxR

We can write

lx(g, p)j2 = > a;@w%vmﬁg (m-a.e.in § x R) . (17

In the case of an “appropriate choice” of zeM (eg. if 2 lealw; p)f e

€ L1 (R, It ()] dp); we shall refer to this condition as to the condition “X)

18

émom:mieaowmsmmwawom:EBgmoz and integration and according to the
Fubini theorem we have ;

2n
0x(oy) = 3, [ wlp) dp e-intcy (ar; ) [ etnay(g, p) dg . (18)
n R 0

Each member of the sum in (18) with n = ¢ tends for |¢| - oo ¢o zero. Inter-
changing lim and > (if Ppossible, e.g., if the condition “X ig fulfilled) we get

[t| >0

@=) = lm onfoy) [ co; ply(q, p) dua(g, p) . (19)

[t]s0 SxR

If co(z; p) is independent on P, we have &, = lim Wz% = w and the system
|0
comes back to the original unperturbed state . For a general & €M we can

get @, + .

limits in the classical ergodic theory due to the “mixing property” of some
ergodic states [15]. The occurrence of the “mixing” in the ergodic theory
implies ergodicity of the state (or equivalently the ergodicity of the measure).

where the manifold M, is defined by the transformation of points in the
“spectrum space’” X corresponding to the group of time transformations
of the system.

It is shown in [3] that the old Problem of the description of the “reduction
of a wave packet” without any special Postulate (i.e. without Postulating
the oceurrence of the “processes of the first kind” in the Process of measure-
ment, in the terminology of von N eumann [16]) can be expected to be solv-
able within the framework of the quantum mechanics of infinite systems.
The decisive feature for such a solution is the nontriviality of the centre

of the formalism explained in our Sec. IT. for the “problem of measurement’”
might be seen from the following example.

V.1. Example. With the notation of Sec, IL let P, = Py, Pp = Py,
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dim Py > 2 and an integer N < dim Py (it could be also V = ©). Let z; € 9,

e@wéu :ﬁmz_mn?zm Porfaty < 0 (for JH(E =12 <o N0 e 200
N N

is g-“-_.quamss. Put 2 = 2, coy( 2 leif? = 1), ¢; € C. By these assumptions
i=1 £=1

we have

N
O(d) = lim e, (o, 4 y=3 les2(x} a8y, Podgo) for all 4 eM. (21)
{0 t=1

The state w,(4) Maw@?w&mm? Aé&o) is in genera] 4 coherent superposition
1
of the states 0z{d) = (2:&,, Ax:ky) and the state @, = 2lel2@,; is a mixture

]
(on the algebra m). Hence, in the state @z “after g measurement’ there jg no
macroscopic interference between different “pointer Positiong’’, boooH.&uw
to [19] each (-) t-invariant state on IR can be extended to ap invariant
state on Y. After such an extension of aJ] @z; We obtain

Bz(y) = W €:[2@2(y) for all yedl. (22)

2=1

This is the state of the Wwanted form “aftep the reduction . Such a state on u

The author is indebted to Dr. J. Pigit for Some corrections in the English
version of thig paper.
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