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PROBABILISTIC MODELS FOR THE PROCESSES
OF MULTIPARTICLE PRODUCTION!

VLADIMIR MAJERNIK*, Nitra

In this paper we deal with models for multiparticle production which
use mainly statistical-probabilistic arguments. We describe especially
the stationary and non-stationary Markov models, within the framework
of which one can account for several experimental facts by the multiparticle
production. .

L. INTRODUCTION

Recently a lot of work has been done in constructing theoretical models
to explain the data obtained in high-energy inclusive experiments. We can
divide these theoretical models into three groups: (i) dynamical models, the
starting point of which are certain assumptions about the dynamical mecha-
nisms of multiparticle reactions, e.g. multiperipheral, multi-Regge, [1] ete.
(1) probabilistic models, which use mainly statistical-probabilistic arguments
to explain the multiparticle production. The follewing models belong to this
class: the Gaussian [2], the information-theoretical [3] and the Markov [4]
models. (iit) other models, in which use is made of various arguments to con-
struct these models, such as, for example, the thermodynamical [5], the
string {6] and many other models.

Let us deal more in detail with the probabilistic models. The first of them
represents the Wang model [7], which among other things leads to the Poisson
multiplicity distribution given by the well-known formula

P(j) = (1)

The second and more soplistaceted model is the information-theoretical
one [3] in which the use has been made of Jaynes” principle of the maximum
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missing information [8] in inclusive multiparticle reactions. In the description
of the inclusive experiments there are quantities that are sums of distribution
functions integrated over many variables. It is, therefore, clear that a con-
siderable amount of information gets lost and in a limit of very high-energy
we can apply the Jaynes’ principle. All the known phenomena in inclusive
reactions can be calculated from the Jaynes’ principle with appropriate
constraints [3].

II. THE MARKOV MODEL

The last model here is the Markov model [4, 9] for multiparticle production.
In this model one assumes that the particle production is realized via the
excited states of the hadrons (resonances) in two basic stages: (i) the interaction
stage in which the hadrons are excited into higher energy levels by means
of the incoming particles; (i) the decay stage in which the excited hadron
decays producing secondary particles.

We assume that the transfers between the hadronic excited states represent,
a Markov process describing by means of the Kolmogorov equations. Let

80,81, ..., S, be the hadronic states and L the transfer matrix ; the Kolmogorov
equation of such a Markov system has the form
dp .
— = Lp, 2
y P (2
where p represents the vector of the probability distribution of the hadronic
states [po, 21, ..., pn] and
\.‘cc &.Ou cae Mrowu
L — ms A ... i
Nxo Nﬁ ae N::

Here 20, A01, ... represent the transfer probabilities between corresponding
states which are given by the (generally unknown) internal dynamics. Due to
selection rules some of the transfer probabilities might be equal to zero.
Since by means of the set of transfer probabilities the final multiplicity distri-
bution is given, we can reach from the final multiplicity distribution some
important conclusions about the internal hadron dynamics.

Let us suppose that due to a selection rule between the hadronic states,
the hadron can change its state only to the next one with the transfer proba-
bility 4;¢;1. This assumption represents a considerable restriction on the
internal dynamics of the hadron. The transfer matrix has then the form
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— Ao 0 0 0.

Ao —A 0 0

L= 0 A —4s 0
0 0 A —l3

and our Markov system [10] is described by the differential equations

».vo:_v = —Jopo(t) (3)
Pelt) = Zepr—1(t) — Zipi(t)

.NFNIHQV = N:lm%:{mﬁv — M:.Iw%:luﬁv k= 1,2,

It can be shown that the system (la) has for the boundary conditions
Pt =0)=1p(t=0)=0,¢=1,2,... the following solution [4]

Po = exp (— ) . (4)

20
P = exp (—721l) — [exp {(h — o)t} — 1]
AL — 2o

[T m.w £y

P = exp (— Mt ﬂ [ z?t% ,MM (A — 24-1)&:} A&y .. A&y
=0 00

i=1

Putting %9 = 41 = A3 = ... = A, which represent another restriction on the
internal dynamics, we get

(At)x

{—2t} k=0,1,...,n,
k!

pi(t) =

which represents the well-known Poisson distribution (see formula (1)). If the
interaction stage has the duration 7', then at the end of the interaction we have
the probability distribution of the excited hadronic state given as

pe(T) = ———exp (—AT) k=01,

In the decay stage the excited hadron goes over to its ground state whereby
the k-th state decays into k secondaries so that the probability p, represents
the probability of finding & secondaries in the final state as well.

As it is known the mean multiplicity by the probability distribution (1) is
given as
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{ny =T .

We get 50 a connection between the mean multiplicity and interaction time.
If we take for the mean multiplicity the equation (n> — kE}”, as it results
within some statistical models for multiparticle production [13], then we get

o (4a)

. The plot of the experimental mean multiplicities [11] and the square root

of laboratory energy is shown in Fig. 1. We see that the function (ny = LEY?
fits the experimental values well so that the relation (4) holds within a large
range of the laboratory energies. Eq. (4a) shows that the energy of ?._EM:%
particles and the interaction time are functionally connected.

If the Markov process is large enough, we can consider this process to be
stationary. In order to obtain a nontrivial solution, we change slightly the
Markov system taking the transfer matrix as follows

‘—2 w0 0 0
6 —i u 0 0

rnoooly.:o

The equation (3) has then the form

D= —lpo + pup (5)

P = —Ap; + upi =12 ...,n.

We get the stationary solution of equations (5), if we put po=p1= ... =

= pp = 0. Doing this one obtains (x = Alp) = %P0, ..., Pirl = #%P;, O
Pn = (%)"po.
Since Yp, = 1, po = (1 — %) and
Pn = =M1 — ). (6)

By means of the formula (6), the elements of probability distribution of multi-
plicity are given and we obtain a power probability distribution. The mean
multiplicity is given as

y =3 0+ Vpw = (1 = ),

the square of dispersion

D=3 (n 41— (ny)2p, = (n) + «2(n)?
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Fig. 1. Mean multiplicity versus square root of laboratory energy Ej.

and the ratio

D2 (ny 4 2(myr

The Wroblewski relation D = A4<{ny 4+ B [12], in our case D — w(ny 4-
+ (1/2)x71, is satisfied for the stationary Markov process as far as {(ny> 1.
In this model we .can easily introduce the concept of temperature. Putting
In s = —Eo/kT and assuming that the energy of the n-th hadronic state
E, = nk,, we get

3@@
il

Ply) = - —— ‘Muoi -
1 —exp im

which represents Gibb’s energy distribution of the hadronic states. This:
energy distribution is supposed within some models for multiparticle pro-
duction, e.g. in the thermodynamic one [5]. How near to the stationary state
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Fig. 2. The ratio pi/p:.1 plotted against the multiplicity <. Parameter
is the laboratory energy.

the Markov process is can be shown by means of the dependence of the ratio
i = Pi/pi;1 on the multiplicity. This dependence is plotted in Fig. 2. We see
that we get a strong dependence for the ratio y on the multiplicity for a low
laboratory energy £ = 12 GeV, where for the highest energy this ratio is prac-
tically constant. This suggests that the higher the energy of the incoming
particle is, the nearer to the stationary is our Markov process.

ITL. CONCLUSIONS

From what has been said so far it follows that (s) Ina non-stationary
stage of the Markov model of multiparticle reactions we get the Poisson
multiplicity distribution. (i4) The stationary Markov model can be applied
at the highest accelerator energy.

The described models represent only the simplest of the class of the general
Markov processes, it may be therefore expected that it can be extended and
then one could obtain a better agreement with the data.
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