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PADE’'S APPROXIMANTS IN WEAK INTERACTIONS!

R. P. SAXENA*, Géteborg

order weak interactions employing Padé technique,
Consider a function (which may be the invariant amplitude for any weak interaction
process) T'(g, 1) which has an expansion of the type:

T(g,4) = M%SS (1)

Here g may be g coupling constant and 1 a cut off parameter. If T represents a weak
interaction amplitude, then ail the coefficients f,,(1) (except the first) diverge as A approach-
es . We want to put the following question : Does the limit of a, sum of such terms

T@=i> Tl =73 gy (2
A—00
exist and is there some way of approximating such a sum, merely by knowing the first
few terms ?
One constructs the Padé approximants 7'(r,n+m) (9, ) (nandn + m being the degree

; of polynomials in ¢ in the denominator and numerator respectively). The combined

limits of the sequence

700 (R +m) (g,4)
M—>00
A >0

should yield, if the Padé approximants to such a term by term divergent series converge
in some sense, the true answer 7'(g), which one is interested in. This limiting procedure
is the essence of the theorem of Villani et al.

For the sake of brevity, we shall discuss the cases m = —1 and 0 respectively. One
can prove that the Padé approximants 7'(n.n-1) (9 ,4) satisfy:

T (g, 7) > 0 (3)
A >

! Talk given at the Triangle Meeting on Weak Interactions at SMOLEN ICE, June
4—-6, 1973,
* Institute of Theoretical Physics, $-402, 20 GOTEBORG 5, Sweden.

205




T(rn=1) (g, 7) > 0.
A->0

Such a behaviour is obviously expected for a series of Stieltjes, which can be expressed by

@
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with a non-negative D(t). Obviously then T(z»~1) (g, 2) must posses at least one maximum
as a function of . Let the position of the maximum be at 4 — An{g). Villani et al. then
prove that i

i) aco(g) —> 0 ()
and ii) 4,721 (g, 2,(g)) — T(g).

No such simple criterion exists for the Padé approximants 7'(n.n) (g, 4). However,
they do have s stationary feature, in the sense that their derivatives possess maxima,
i.e. T(=n) (g 3) have inflexion points as a function of A. If the inflexion points are at
4 = A,(g), then one can prove that

1) no0hu(g) — 0O (6)
i) gy Tm (9, Aalg) — T(g).

This completes the statement of the theorem of Villani et al. The proof of this theorem
also exists [2] for the Born-series of the potential scattering amplitude with potentials
more pronounced at the origin than r-2, dnmogcwmnm_% no'such proofs exist in the quantum
mo_a theory. We shall, however, adopt the viewpoint, that the theorem of Villani et al.
Is true and merely apply it in order to compute higher order weak interactions. In view
of the fact that the new gauge theories of weak interactions [3, 4] are claimed to be
renormalizable [5], it should be interesting to compare their results with ours and the
experiments if any.

Our procedure is then straightforward. We compute all the Feynman diagrams up to
the four order in the Fermi-coupling constant @, employing a Pauli-Villars regulator
and construct the Padé approximants T, 7.2, T0.2) and TC.1) (which is all that we are
able to calculate) for the following processes:

i) e — v (or g — 1) elastic scattering
i) e — v, (or y — vu) elastic scattering
i) p—>e+ v, + v, decay
iv) K} > p+ 4 p- decay.

We now look for the above mentioned stationary features in our Padé approximants
and compute the values of the Padé approximants at these stationary points. Our results
arc:

1) e — w, scattering :
7.1 no stationary feature

702 (g, 38 GeV) = 0.832 g
(1) (g, 42 GeV) = 0.923 ¢4
T2 (g, 47 GeV) = 0.975 g

Gexp (e + env\Qﬁlh < 40

1) € — v, scattering
T4 no stationary feature
T2 (g, 34 GeV) = 1.334 ¢
74 (g, 41 GeV) = 1.487¢
T2 (g, 48 GeV) = 1.632 ¢
Gezple + ve)fov.a = 1.0 + 0.9
Oweinberg (€ + ve) = (1.5)201_4

1) u-decay:

Il

It

Here we assume that the weak radiative corrections generate an induced tensor term
in the amplitude. (Scalar and pseudoscalar term turn out to be negligible). Denoting 4
as the V—A amplitude and B as the induced tensor term in the u-decay, we find:

A2 (g, 91.4 GeV) — 0.995
B (g, 24 GeV) = 0.032

The lower Padé approximants give similar results. One can now compute the g-decay
parameters ¢, v and d. (The parameter is zero within our approximations).

Present calculation Experiment V—4
¢ = 0.752 0.745 L 0.025 3/4
d = 0.756 0.78 4- 0.05 3/4
¢ = 1.01 097 4-0.5 1

iv) KY > pt 4+ u- decay :
The decay amplitude for the decay of a KO state to a u*u~ state is given by
A > ptp~) = i w(p) (F1 + ysFa)olp’) . (7)

The decay rate for K¢ — u+u- is then given by

"y 4m2\1/2 :
LK}, > ptpm) = — (1 — N.: [Fal?. (8)
8= my

We compute all the contributions (up to the 4t order in g) to F'g and calculate the Padé
approximants as before. The experimental KY — yy and KY — mup decay form-factor
as well as the soft pion theorem for K} — any decay are needed to compute numerical
answers for Fz. All such form-factors are assumed to be momentum independent although
they occur inside intermediate momentum integrations in higher order graphs. (The
reason for this ad hoc assumption is simply the non availability of experimental data
regarding the momentum dependence of these form-factors). Qur results are

P (g,19.5 GeV) = 0.26 x 10-11
FQ® (g, 7.5 GeV) = FRV (g, 7.5 GeV) — 0.31 x 101
F@2 no stationary feature.

The relative branching ratio for K9 - uip- Qmo@%.ocgm out to be

(KL= p*17) _ 0.95x10-8 from F§-V
K9 > all 1.35 X 108 from Fi-* and FZV

The agreement between these two results and the recent experiments which give a value
of 1—3x10-8 for the above branching ratio is seen to be good.
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T have deseribed above an alternative procedure for regularizing perturbation series
of non-renormalizable quantum field theories. J udging from the experimentally verifiable
consequences above, the procedure would seem to be good.
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