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REMARKS ABOUT A SPONTANEOUS BREAKDOWN
OF HADRONIC SYMMETRIES!

JIRT HOSEK*, Rez u Prahy

It is shown that the use of more multiplets of scalar fields which all
transform according to the complex fundamental representations of the,
U(n) group in a plasmon generating mechanism of the U{n) gauge group has
to be taken with stipulation. The same holds when using (again for the U(n)
gauge group) a scalar multiplet transforming according to the (n, n*) 4 (n*,
n) representation of the U(n) group.

1. INTRODUCTION

At present much attention is payed to the development of unified gauge
models of weak and electromagnetic interactions [1, 2] which appeared (in
the leptonic case) to be very attractive and convincing?. However, in the
description of strongly interacting particles it is desirable to respect already
existing and succesful strong interaction symmetries?, namely the chiral
8U(3) x SU(3) group. There are papers dealing with this group (and the
SU(3) group itself) within the framework of the plasmon generating mechanism
(PGM) [3] and using it when describing the weak and electromagnetic inter-
actions of hadrons.

It is the aim of the present note to show that the use of more complex
fundamental representations (CFRs) as suggested in [4] is not satisfactory for
giving the mass to all »2 Yang-Mills (Y M) gauge fields of the U (n) group
because of lacking the support of a general principle.

! Talk given at the Triangle Meeting on Weak Interactions at Smolenice, June 4—86,
1973.

* Ustav jaderng fysiky CSAV, 250 68 REZ u Prahy, Czechoslovakia.

2 A comprehensive list of references on this subject is given in the paper of Lee B.
W., preprint NAL-THY-92, October 1972.

3 Lipkin H. J., preprint NAL-THY-85, September 1972.
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II. METHOD

The question of a choice of the auxiliary scalar multiplet in PGM of the
U(n) group arises — how to obtain either all n2 ¥ M fields to be massive or to
obtain just one massless »photon®. In [4] an answer is found in the framework
of CFR. Since ,,photon‘‘ corresponds to that generator of the group which
annihilates the vacuum it is shown by construction that the use of the CFR
leads to (n-1)2 massless ¥ M fields. This result is to be expected and is connected
with the very important characteristics of PGM, namely the canonical number
of Bludman and Klein [5].

Let N be the number of real scalar fields and » (the canonical number) is the
maximum number of the real scalars which may have the vacuum expectation
value (VEV) different from zero. If N — v < g, where g is the number of ge-
nerators (also the number of Y M gauge fields), then N — » is equal to the
number of Goldstone bosons (@B) and simultaneously to the number of massive
gauge fields having implied PGM. Applied to the CFR of the group U(n) it
means that N = 2n, g = n2; therefore the number of massless gauge fields
is n2— (2n — v). Beacuse this number was found to be (n — 1)2, it follows
that »'= 1. Such a result is quite natural, because » is also the number of al-
gebraically independent invariants which can be formed out of the given repre-
sentation.

Furthermore it was suggestedt to use n CFR for giving a mass to all »2
gauge particles and # — 1 CFR for giving a mass to #2— 1 ones (one ,,pho-
ton®). Such a construction supposes that each CFR can have the nonzero
vacuum expectation value at its own individual position. However, with the
help of a constant gauge transformation -one is able to displace all the VEVs
into the common place. It is then possible to form linear combinations of these
new fields in such a way that only one multiplet will have nonzero VEV and
will contribute to the PGM, so that again (n — 1)% massless ,,photons* remain.

Let us demostrate the sketched procedure in the case of the U (3) group.
The standard Lagrangian can be written as

i i i i
— 304, (0 +- 5 giedl + ’ 9By, — r ghAl — MQ\F Dy —
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where V(®q) is an invariant polynomial constructed out of the possible
fundamental invariant ®+® only. If we put

4 An essentially the same mechanism as that in [6] was independently suggested by
de Wit B.
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we obtain the mass term of gauge fields in the form
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There remain (3 — 1)2= 4 massless Y} fields A}, A%, 43 and

1
vm 7 iy’
B, + =

= —— kn&m
Vier +3¢" " 1wy + 42

",

Suppose further there exists also a multiplet @, for which

0

{Pyo=1|b (3y
0

The Lagrangian is the same as (1), only due to the form of the VEV (3) the:
mass term of Y M fields becomes

7
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Indeed, formal unification of the mass terms (2) and (4) results in 8 massive
gauge fields (one ,,photon®, so called n — 1 scheme). However, the linear
combinations of the fields A2, Aj and B, are not orthogonal; moreover, we
can perform a constant rotation

t - Qﬂ
Dy, = exp _M A7 | Do
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{(and the corresponding redefinition of the gauge fields), which leaves the
Lagrangian invariant and

“ 0
Agmvao = 0 3
—b

which means that the structure of the PGM for Gmwv is the same as that of Dy,
Therefore the resulting mass term (using both multiplets @) and Smwv is the
same as (2) with the substitution a? - a2 2. But this clearly corresponds

to the use of the PGM for one scalar multiplet

1
Yoy = _\a (@Da) — bDy,))
‘with
0
Fapo = 4
_\ a?+b?
‘while an orthogonal linear combination
H ’
Py = _\aﬂ% (bDq) + ad,,)

has (¥ = 0 and does not contribute to the PGM.

For a more detailed analysis the n CFR are written in the form (see [4])
of the n X n complex matrix @, but it is possible to conclude from the form
-of the gauge transformations that the representation in question is rather
(n, n*) + (n*, n) of the group Un) x U (n). Here, only one U(n) group is
treated locally (together with n2Ym fields), the other U (n) group is only global
{constant group parameters):

D - (SSE)-10; D+ > G+(88p)
D — D(88p); D+ - (8S8p)-10+,
where

n2-1
S =exp (i) k2®),  Sp= exp k"™,
a=1
A% are the generators of the SU(n) group in the CFR.
The canonical number and therefore the number of Goldstone bosons can

(and in fact must) be determined regardless of gauge transformations being
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global or local. According to Cabibbo, Gatto and Zemach [7] every complex
matrix can be written as

(D= U DpiV,

where U and V are suitable constant unitary matrices and (@p) is a diagonal
positive definite matrix. From this it is clear that the canonical form of the
VEV of the multiplet @ can be chosen as (®pd¢ and therefore v = n5. Since
the number of all real scalar fields is 2n%, we may conclude (because 2n2 —
— n < 2n?) that the number of GB is 2n2— n. When treating the entire
group U(n) X U(n) locally (it means together with 2n2 Y M fields), the PGM
will guarantee that all 2n2— n GB will be absorbed by gauge fields, 2n%—
— {2n? — n) = n of them remaining massless.

If we assume only half of the symmetry group (i.e. U(n)) to be local (only
n® Y M particles are present), it is not surprising that all n? gauge fields become
massive; however, there remain (2n2 — n) — 7%= a(n — 1) Goldstone bosons.

Let us illustrate the situation briefly by the group U(3) x U(3). The number
of YM fields is 18, the number of real scalar fields of the (3,3%) - (3%, 3)
representation is 18 as well. According to the general discussion » = 3, i.e.
{@)0 has the form of a real diagonal matrix and can be written as

(Do = eoko + e3i3 + e3ks,

where J; are the usual Gell-Mann matrices, 1y = #\Mw 1. Such a form corres-
ponds to three independent invariants, which can be formed out of & {8]:

1 1= tro+@
iy = trP+PP+P (5)
i3 = tr@+ OO+ PP P,

The number of GB is clearly 15 and according to the PGM there should exist
15 massive Y M fields and three massless ones. The initial Lagrangian can be
written as follows:

— $tr(0uP — Jig®MCE + Ligh®+BE — Lig(CO — B)id+) X
X (0u® + ¥gh®C, — HgPABL + Hg(CO — B)i®) +
-+ v«ASV -+ h\w%ﬁw\mv -+ N\\KLQU + N\R@A.Qwv + h\q@aﬁwmv.

5 For the group SU(n) X SU(n) the canonical number should be v = 5 4 1, since

(D)o = exp (ip)U+* (Pp>eV, where U and V are unitary and unimodular. The remaining
independent invariant stems from the complex phase.
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For the sake of simplicity we assume only one common coupling constant

9506y = Isume = Jvap = Jvay. = 9 -

The resulting mass term of the gauge fields reads as
1,422 1Y} 2 M 1 ?
126 {(Vo)2 + (VD)) + 1g2 i +ﬂ es| {(40)?2 + (422} +
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12

1 (1/2 1 2 \rmx 1 )2
+— g2 — ——gg — O}/ — 434 ——

ku ﬁ\w mo+v\w &g — 3] (4, wm\_,*.ﬁ\whm +

1 2 2\ ~
+~fw el ﬁ\w g0 — M\ﬂ eg) {4° — <w 402, A (6)
where we have introduced >
Vi=C; + B;
Al = 0F — B:.

It m.m seen Q&.e the fields V9, V2 and V% remain massless. For the expression
(6) it is also immediately visible what it means (as in [4]) to treat only one
U (3) group locally (only A% exists) and to asusme only (@3 = 5l (i.e. gg =

3
= A_\\ o == 0. Then the mass term (6) is of the simple form 1972

[(42)2 4 (A4%)2]. Since the number of GB is given only by a representation,
there must be 6 GB-s which remain in the model. On principle we could
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visualize them by performing the ,,polar decomposition‘‘ according to Higgs
[9] and Kibble [10].

Moreover, the form of invariants (5) prompts to be reserved since due to the
renormalizability V(@) (constructed out of 41, 42 and 43) can be at most quartic
in ®. Fortunately, the recently suggested mechanism [11] leaves room for
attractive speculations.

Let us deal yet for a moment with the (3,3*) 4 (3%, 3) representation of
the chiral SU(3) x SU(3) group and let us wish to get a mass to all Y. M

1
fields except the electromagnetic field V3 +|M Vi. For such a task it is

indispensable to put (@), into the form?

a 0 0
0 b d .
\0 i ¢

which is just the assumption of the tadpole model of Coleman and Glashow
{12]. Unfortunately, such an assumption is not justified since the tadpoles d
and e, which correspond to the apparent parity and hypercharge violation,
can be transformed away by a suitable constant gauge transformation [13].

Nevertheless such an attempt suggests to find other representations, which
would also contain parity and hypercharge violating, but non-rotatory tad-
poles.

III. CONCLUSION

The use of scalar multiplets in the PGM should be assumed only as a tool
for giving a mass to gauge fields in such a way as to preserve the renormali-
zability of a theory. It is even an emergency tool, since for the remaining
massive scalar fields one hardly finds an interpretation. From this we conclude
that although the use of the discussed approaches to the- PGM (more the
CFR and the (3, 3*) + (3%, 3) representation for the group U(n)) does not
respect all the requirements of a general formalism, it may have an informa-
tive worth like the tadpole model quoted (up to the present).

My thanks are due to Dr. E. Truhlik for many valuable discussions.

6 This is possible if we rewrite the multiplet @ into a nine-row column, the generators:
of the SU(3), and SU(3)x groups being (JL)is = 3 Gfims — imi)y (JE) = Lifims + @ims),
m=1,...,814j=0,...,8.

7 The complex phase is disregarded since it corresponds to the CP violation (Maiani
L., preprint IS8 71/21).
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