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THE SU(3) BREAKING AND CABIBBO ANGLE!

. JOZEF LANIK*, Bratislava
A theory of the Cabibbo angle 8 is suggested within the framework of the
SU(3) symmetry breaking. In this theory the parameter # is fixed and com-
puted by linking together the Cabibbo rotation and the full strong interaction
SU(8) breaking, and by using a subsidiary condition that the value of ¢ is zero
in the world with zero pion masses. The computed value & = 0.27 4+ 0.051s
in a good agreement with experiment.

1. INTRODUCTION

After the discovery of the approximate SU(3) symmetry of strong inter-

actions (see for example [1]) it become apparent {2, 3] that the SU(3) furnishes

a unified basis for describing both the electromagnetic and the weak interactions
using the notion of currents. In the SU(3) scheme, the electromagnetic and
weak interactions of hadrons are described by octets of vector Ji(x) and
axial-vector J* (x) ¢ =1, ..., 8), (u = 0, 1, 2, 3), currents. ’
The hadronic weak current J%(x) has been suggested to be of the form 3]

Ba) = (J* + iJ% + I + iWJ¥) cos & + (J4 + iS5 + J¥ + iJ¥) sin 8,
@) 1 2 1 2 5
(1a)

or, in another representation
(o) = e MY 4 15 + TP W3, (1b)

where F is the SU(3) generator, and where the phenomenological parameter
(the Cabibbo angle) ¢ is used to describe the relations between processes with
A8 = 0 and processes with 48 = 1. As Cabibbo [3] has shown this current
gives a good description of leptonic weak interactions with ¢ of the order of
15°. This value of & accounts, through the factor tg & = 0.26, for the suppres-

1 Talk given at the Triangle Meeting on Weak Interactions at SMOLENICE, June
46, 1973 and at the Colloquium on Elementary Particles in the Liblice Castle, June

18 —20, 1973.
* Fyzikdlny tstav SAV, Dubravskd cesta, 899 30 BRATISLAVA, Czechoslovakia.
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sion of meum.zmmcamm-orm.bmmbm decays relative to decays which conserve strange-
ness.

It is easily seen from relations (1) that the following hadronic charges J+,
J_ and Jg, defined as follows ’

Jy = Hd3xd}(x), J- = JI, Jo = }[J+,J-], @)

form an algebra of the SU(2) group. This represents the Gell-Mann's version
of the universality of strength of weak interactions [4].

The universality requires that the parameter ¢ should be the same for the
vector and axial-vector currents, but evidently the universality does not fix
this parameter. We see from (1) and (2) that the angle ¢ measures the differ-
ence between the two SU(2) subgroups of the SU (3) group, namely, between the
subgroup SU(2) generated by the weak hadronic vector charges (the vector
part of generators (2)) and the isotopic SU(2) subgroup which remains invari-
ant after the breaking of SU(3) strong interactions [5]. So, in order to cons-
truct a theory which fixes the parameter @, one has to link together the strong
interaction breaking of the SU(3) symmetry and the weak current, or the
Cabibbo rotation angle as it is seen from eq. (1b). This has been attempted
in a number of papers [6—16] using various kinds of assumptions.

In our previous paper [16] we have suggested a new theory for the com-
putation of the Cabibbo angle within the (3, 3) + (3, 3) chiral symmetry
breaking model. It is the purpose of the present paper to apply this theory
of the Cabibbo angle to more general models of the chiral symmetry breaking,
namely for those consisting of only SU(3) singlet and octet parts but with

' otherwise arbitrary chiral transformation properties.

II. THE CONNECTION OF THE CABIBBO ANGLE WITH
. THE STRONG INTERACTION BREAKING OF THE SU(3)
SYMMETRY

In the following we shall assume the usually accepted strong interaction
Hamiltonian of the form

H = Hy + gHs, (3)

where Hy is the SU(3) symmetric part and Hs represents the eighth component
of the SU(3) octet. The parameter g describes the portion of Hg which is
needed for the Hamiltonian (3) to be the actual strong interaction Hamiltonian.
So, another portion of Hs, for example goHs (where go # g) instead of gHs
in (3) and with the same portion of Ho should represent the different, non-
physical Hamiltonian of the following form

H = Ho -+ goHs. 4)
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Now in analogy with the considerations of ref. [16] we shall define the
connection between the Cabibbo angle 9 and the realistic S Q (3) noninvariant
strong interaction Hamiltonian (3) to be as follows:

(0je PP 5#e?F|0) = (O0|H|0). (5)

Because the portion of the SU(3) singlet (i.e. Ho) is the same in both Hamil.
tonians (3) and (4) by construction and since, Fa commutes with Ho, we have
from equation (5)

.. o m

Ao_oe,%ﬁ%-s@_ovHleEm_ev. §
Jo

For further considerations we shall also assume the following relations con-

cerning the vacuum expectation values of the members H; 1 =1, 2, ..., 8)

of the octet

<0|H;|0> = 0, where ¢ =1,2,...,7 (7)
and
<0|Hs|0) # 0

to be valid.

It can be easily seen that the relations (7) are very closely related to the
invariance of the vacuum under the isotopic SU(2) subgroup of SU(3), but
4o the noninvariande of the vacuum under the full SU(3) group. In fact, since
H; (i =1, ..., 8) form the octet, we have immediately

(O|[Fs, Hi)10> = ifiplHio, (8)

where F; (i = 1, 2, ..., 8) are the generators of the SU(3) group. Due to ‘the
isotopic SU(2) invariance of the vacuum, that is 7;]0> = 0, for ¢ =1, 2, 3,
it necessarily follows from eq. (8) that (Hi)o = 0 fori =1, 2, ..., 7 and that
(Hyg>g is arbitrary. If the vacuum is invariant under the full SU(3) group,
ie. F3l0> =0 for any ¢ =1, 2, ..., 8, then also (Hg> = 0. Thus, egs. (7)
imply that the vacuum can only be symmetric under the isotopic group but
not under the full SU(3) group. In other words the physical state of strongly inter-
acting particles can form only the isotopic exactly degenerated multiplets but not
fully and exactly degenerated SU(3) multiplets. In such a way the require-
ments (7) should be understood as the ones fixing a certain portion of the
SU(3) breaking of strong interactions, namely that SU(3) breaking which
concerns the approximate SU(3) supermultiplet structure of the hadronei
states. So, eq. (5) (or eq. (6)) only together with conditions (7) can represent
a theory of the Cabibbo angle in the sense that they link together the Cabibbo

184

rotation and the full strong interaction SU(3) breaking consisting partly of
the SU(3) breaking of the Hamiltonian (if g 5= 0) and partly of the SU(3)
noninvariance of hadronic states. It is easily seen that in fact, within the
framework of such a theory the Cabibbo angle is unambigously fixed by the
value of the ratio g/ge of parameters.

To show this we combine eqs. (6) and (7), and after some calculation we:
obtain the following equation (see Appendix)

3 L. 3gin2 & | {Hgyo = 0. (9)

gdo

If the vacuum is fully SU(3) invariant, then due to Coleman’s theorem [17]
there is no SU(3) breaking at all and so, the value of the Cabibbo angle should
be arbitrary. In other words one can perform any rotations in the SU(3)
space without changing the physics. We see that eq. (9) also describes this
phenomenon because in the case of the exact SU(3) invariance of the vacuum
{Hzg> = 0 should be valid and so it follows from eq. (9) that the parameter &
can be arbitrary. Thus the conditions (7) are the necessary requirements to
obtain the definite value for the Cabibbo angle from eq. (9). Assuming the
validity of eqgs. (7) (i.e. {Hg)o 7= 0 in eq. (9)) we have

sin2 ¢ = % HIM. (10)
Jo

The present theory of the Cabibbo angle accounts naturally for the SU(3)
limiting value of the parameter ¢. This value can only be fixed if {(Hso # 0
and.g = 0, that is, only if the SU(3) symmetry of the Hamiltonian exists but
not that of the vacuum. In this case the SU(3) noninvariance of the vacuum
should be realized through the existence of the spinless scalar Nambu-Gold-
stone particle » with the isospin 7 = 1. Then from eq. (10) we obtain the
following SU(3)-limiting value of the Cabibbo angle tg?$ = 2, which is also
in agreement with the results of refs. [13, 16].

In order to calculate & for the realistic world (i.e. if g # go) we have to
calculate the ratio g/go of the symmetry breaking parameters. For this one
extra condition concerning the property of the non-realistic world with the
Hamiltonian (4) (i.e. when g == go) must be added. Consistently with consi-
derations in previous papers {9, 12—16] we shall assume that in the non-
-realistic world described by the Hamiltonian (4) pions have zero masses, or
mathematically :

(ol Holm + golar el = 0. | (11)

It means that we fix the zero value of the Cabibbo angle in the case of zero
pion masses. Thus it is, in fact, proposed that there exists the same mechanism
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which introduces both the non-conservation of the strange-preserving axial
currents (i.e. m? % 0 due to PCAC) and the strangeness non-conservation in
weak processes (i.e. & # 0). In such a way the condition (11) should be under-
stood as a subsidiary condition containing an extra information about the
possible dynamical origin of the Cabibbo parameter .

Using an appropriate normalization, the realistic Hamiltonian (3) gives
the physical masses for pseudoscalar mesons in the following form

m? = CalHoly + géalHalny, (12)
my = (K|Ho|K) + g{K|Hs)K),
.and the Wigner-Eckert theorem gives the conditions
{miHoly = (K|Ho|K), (13)
(a|Hglmy = — 2(K|Hs|H).
‘Combining egs. (11), (12) and (13) we get

(14)

go o | Ma
my + 2
1t is worthwhile to note here that this ratio g/go does not depend on the
normalization conditions, as it should be. Also, because of using the Wigner-
_Eckart theorem in the computation of value (14) and because the physical
hadron states are only the approximate SU(3) multiplets the realistic value
of g/go which should be used in eq. (10) is expected to differ from the value
(14) within approximately 10 %,—20 %, and so, we expect the approximately
equal error in the calculation of ¢ when using eq. (14) in relation (10). We

have then

my,
sin? ¢ =

5
my -+

from which it follows that @ ~ 0.27. We see that the agreement with the
-experiment is good within the expected error.

III. CONCLUSION

In the present paper a theory of the Cabibbo angle ¢ has been suggested
within the framework of the SU(3) symmetry breaking by strong interactions.
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This theory fixes the parameter by linking together the Cabibbo rotation and
the full strong interaction SU(3) breaking, consisting of both the 8U(3) Ha-
miltonian and the SU(3) vacuum noninvariances (egs. (5—7)). One subsidiary
condition (eq. (11)) has been shown necessary in order to present the complete
theory of the Cabibbo angle. This condition introduces into the theory an infor-
mation about the possible dynamical origin of the Cabibbo angle. The com-
puted value of the Cabibbo angle & = 0.27 £ 0.05 is in good agreement with
the experiment. g

The author wants to thank Drs. M. Noga, M. BlaZek and J. Hosek for
suggestions and discussions, and he is also indebted very much to prof. A. O.
Barut and prof. M. Flato for valuable comments.

APPENDIX

To derive eq. (9) from (6) and (7) we have, first, to rewrite the left-hand
side of eq. (6). If we assign

NNmva — @lw%%qmmmm:;.ﬁ ?Pﬂv

where Hg = Hg(0) is the eighth component of an octet H (i=1,2,..,8),
which fulfils the following commutation relations

[Fi, Hj]) = ifinHr, 4,5, k= 1,2, ..., 8. (A2)

Tt can be easily proved that eq. (Al) can also be written in the equivalent
Taylor’s series form ’
(—2i9)?

Hy() — Hy — 20[Fz, Hs) +— —

_ (Fr, [F, Hs]l +

(—2i9)3

+|w,|lm~u?§;§fm&:+.:. (A3)
Combining (A2) and (A3) the following most general form of Hg(#) can be
found

Hg(9) = ay(9)Hs + ax(8)Hs + as(9)Hs, (A4)
where a;(9) (i = 1, 2, 3) are unknown functions, evidently satisfying the
conditions:

Q\NAOV =1, QNAOV = &mﬁov =0 TPWV

because of Hg(0) = Hg. The derivative of the relation (Al) gives

AHO) om0y,
as
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and combining this equation with (A4) and (A2), one obtains the differential
" equations for the functions a;(#) as follows:

a(9) = —|/3ax(9), (A6)
ay(d) = |/3aa(®) — aa(®),
ay(8) = ax(B).

After some manipulations and with respect to conditions (A5) the egs. (A6).
can be rewritten in the following system of algebraic equations

0 = —|/3a:) + 1, (A7)
<M§?& — a3(d) = <w cos 29,
as(9) = 13 sin 29.
2

From (A7) and (A4) we get
Hg(9) = e 2 [ge??F* — 1(1 4 3 cos 28)H3 |-

3 3
|Tlrv|. (sin 28)Hg IT;H {1 — cos 28)H3.

Now introducing this relation into eq. (6) and imposing conditions (7) on the
result one arrives at eq. (9) after some manipulations.
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