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SOME OPEN QUESTIONS IN K DECAY!

MARY K. GAILLARD*, Geneva

We concentrate our attention on the decays Kn.s — with respect to the origin

of the |AI| = 1 rule — and K, — with respect to the breaking of

chiral m%gomuvﬂ We also comment on K. and K, decays. The various
isospin amplitudes are extracted from existing data on non-leptonic decays
and ambiguities arising from electromagnetic mass differences are displayed.
The |AI] = % amplitudes are compared with the pole contribution and
with current algebra predictions. We discuss the extrapolation of the soft
pion theorem for K3 to the physical region. Bounds are given for the diver-
gence form factor as a function of chiral symmetry breaking parameters
under the assumption of twice subtracted scalar and pseudoscalar pro-
pagators.

I. NON-LEPTONIC DECAYS: A PROBE OF THE ORIGIN OF THE AI = : RULE

Tt is a well known fact that the usual current-current theory of weak inter-
actions gives rise to an effective nonleptonic, strangeness changing, operator
which contains |4I| = } and |4I| = # components which are a priori of
a roughly equal strength. However, the observed [4I| = 1 selection rule has
led theorists to construct alternative interactions which have only a component
with |4] = %; higher transitions would then arise only at the level of electro-
magnetic corrections.

Thus we have on the one hand a theory which predicts
A@/AEG) ~ 1
A@g) ~ AR) ~ aA(})
and on the other hand a theory which predicts
AB) ~ A@E) ~ «4()
A(41] >3) ~ 2403

1 Talk given at the Triangle Meeting on Weak Interactions, June 4—6, 1973 at SMO-
LENICE.
* CERN — Div. Théorique, 1211 GENEVA 23, Switzerland. and Laboratoire de Phy-

sique Théorique, ORSAY, France.
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Experimentally, there is no evidence for transitions with |4I| > 2, and
in non-leptonic K decay

A@)AGR) ~ 5%.-

This is large in comparison with the expected ratio (x ~ 10-2), if the violation
of the |4I| = % rule is purely electromagnetic in origin. Thus we are faced
with the task of explaining why the violation is so large — and why # is
predominantly |4I]| = .

Conversely, if we assume that the origin of the |4]| = } transition is in
the effective weak interaction itself, we must explain why it is suppressed
relative to the |4I| = } part. (This problem is even more acute in A decay).

I will not try to offer any explanation for either situation. What I wish to
do here is to look closely at the data and see what information can be extracted
from them. We shall consider the following questions:

a) what are the relative strengths of the various amplitudes which can con-
tribute?

b) if the violation of |4I| =1 is of electromagnetic origin, can the pole # con-
tribution account for the observed effect in K — 3x;

nvmm&ro_mbﬂw@Em&?&@mmm:roumadogoamm_wmbemgoﬁozvmo?wmoc
theorems lead to definite predictions for these amplitudes.

Are these predictions satisfied ?

The 37 decay is unique in that it can occur via a transition with |4I| = {.
This transition is forbidden to order o? if the weak interaction contains
only |AI| = }, whereas it occurs in order « if the weak interaction contains
a |AI}| = 3 part. It is possible that whatever dynamical mechanism suppresses
|AI| = 3 relative to |4I] = } will not strongly suppress |4I| = § relative to
|AI| = 3. The measurement of these amplitudes might then provide an
additional clue as to the origin of the |4I| = } rule. Unfortunately, since
these amplitudes are in any case very small, it will probably not be possible
to determine them because of ambiguities arising from electromagnetic mass
differences. .

for rojes

1.1. How do we extract the various isospin amplitudes from the dat:?

K > 2n

In this case the analysis is straightforward. The matrix element is a constant,
so the phase space corrections due to mass differences are easily evaluated.
The matrix elements are
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o(+—) = 2/|/3[4¥°* + ||/ 2(432 + 432
A5(00) = [/2/3[4}® — J/2(42* + 432y
A(0+) = |/3/2(43 — |/2/3457),
where
(QQ") = (K ~ ar?)

and A7 denotes the change of isospin and the total isospin in the final state.
We have the phase conditions

AT = |47 %

where 85 is the nz phase shift in the e = 0 channel. Using the phase shift
data? [1, 2]:
cos (85 — 03) = 0.619 + 0.052

and the decay rates, we obtain [3]:

43?442 = (4.49 4 0.55) x 10-2

A3 AV = (0.08 4 0.28) x 10-2.
There is no evidence for a {A]| = § transition, but there is a significant |4]| =
= % contribution of roughly 5 9,. (These results are based on the K; branching

ratio given by the Particle Data Group [4]; they would be slightly modified
if the new data [5, 6] were used).

K- 3xn

The evaluation in this case is complicated by several factors. First consider
the ideal case where there are no electromagnetic mass shifts. For the K+
and the K» decays the allowed final states are I = 1, 2, 3. Each of these can
occur via two transitions: A] = I 4- 4. For a given transition to a given
final state, all decay distributions are determined by a single function of the
pion energies

3T
Q

fiyr. 2, y8); yo = —1; Sy =0;

2 Protopopescu 8. D., Alston-Garnjost M., Barbaro-Galtieri A., Flatté 8
M., Friedman J. H,, Lasinski T. A,, Lynch G. R,, Rabin M. 8., Solnitz F. T.
LBL preprint 787 (1972).
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where 7'; is a pion kinetic energy and ¢ is the total energy release. The projec-
tion onto a particular decay mode is a linear combination of f with appropriate
permutations of the y;. For I = 1 the squared amplitudes satisfy the integral
relations

[ aylfG0r = [ ay1fGare

phase
space

[ a3yIfon e = [ a3y £G571 — L7671
Thus if only one transition amplitude, say A4l = }, contributes, we obtain
the predictions

y(+—0) (000)

2y(00+4)  y(++—) — y(00+)
where y is the “reduced rate* (corrected for phase space). Equation (1) is the
only prediction for the rates which is independent of the decay distributions.

If we have only I =1 final states, but both [Al| =} and § transitions,
we will have:

—1 (1)

P = @) + @)

P = Q) — 35w

where k denotes the final state charge mode. We expect that f32 and fi/2
will have different functional dependence, so that the rate ratios in Eq. (1)
will not be modified in the same way.

However, if quadratic and higher terms can be neglected in the decay
distributions, then since a linear energy dependence does not affect the rates,
the two ratios in (1) will remain equal (but different from unity), and the
(symmetric) Al = % amplitude will be well defined. Then we obtain the further
predictions

y(+—0) _ y(H++—)
2y(000) 4y(00+-)
in the absence of I > 1 final states. I = 2 states contribute to the rates only
through the square of the amplitude which is suppressed by potential barrier
effects; thus Eq. (2) is really a test for the absence of 7 = 3 final states.
One can of course remove the dependence on decay distributions by defining
the phase space integral as

~ (2)

op = %%Suﬁh@r y2, ¥3)|%/1#5(0, 0, 0)2. @)

Then the “reduced rate
yk = I'k|gy = (0, 0, 0)[2 (4)
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is simply the mawms.om amplitude at the centre of the Dalitz plot where only
totally symmetric waves contribute; in this way the various amplitudes are
unambigously defined.

moﬁmw@ﬁ at this point, mass differences become important. The centre of
the Dalitz plot is the point where all energies are equal:

yi =0, Ty = Q3.

However, if we use instead the variables
si = (px — P1)%,

the centre of the Dalitz plot is defined by

S0 = 83,

St —8 =20

o : .2
Ti = Q3 — §IMM§ +SWIM§,.
3

Thus even the definition (4) of the reduced rates is ambiguous. This problem
already arises at the level of linear distributions; because the Dalitz plot is
distorted by mass differences, the linear term in fact contributes to the inteoral
over phase space. A similar problem appears in the determination of Mro
various transition amplitudes for the linear terms {(nonsymmetric waves); the
results depend on the parametrization chosen. We shall not advocate a HVWH.S-
cular parametrization, but we shall compare different parametrizations com-
monly used. Bose symmetry requires that the matrix elements for K+
and K, decay be symmetric in two energies. We may take as variables

Yy=ys=—(n+ y2)
z = (tn — y2)f _\w
2 4 y? = 3 >y;
where 3 refers to the odd pion in the K+ decay and a9 in the K, decay. Thus

_ o4 o B
S =AO 14y gt et ). (5)

For the 32° mode total symmetry requires

=10, a =4

I.L1. Violation of |[4I| = } in the symmetric waves

We normalize the isospin amplitudes by

rm\MTSAOV - kﬁw\m xTxAmEkawEkam.wE
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Table 1
Partial rates and reduced rates (Coulomb corrections included)

A I x 10-¢sec * @ (norm. arbitrary) i

i
Mode A PDG Kellett ‘ PDG * Kellett
ey 2.43 4 0.05 2.35 4 0.10 1.279 1.19 4 0.05
000 4.15 4 0.16 3.99 + 0.20 1.444 1.44 + 0,07
OO+ 1.40 + 0.04 1.38 + 0.04 * 1.147 ! 1.16 + 0.06
- 4.52 1 0.02 4.51 4+ 0.03 m 1.000 _ 1.00

where the notation is the same as for K - 2. The Particle Data Group (4)
(PDG) evaluates [27(0)| using a linear parametrization

|2 = | (0)[1 + o(ss — %))

and Kellett [7] has used an expansioninQY/Mx and (@X/Mk)? up to cubic
terms; he has increased errors to allow for experimental uncertainties in the
quadratic terms. His input (1971) is not up-to-date, but we are using his
reduced rates as a comparison to illustrate the effects of uncertainties. The
input partial rates and phase space factors are shown in Table 1. In Table 2
and 3 we show the amplitudes extracted from both sets of reduced rates.
The ratios 43/4; are defined to be equal if AI = § and 4] = } are negligible:
in the I = 1 and the I = 3 states, respectively.

There is no evidence for I = 3 final states; although there is a three
strandard deviation effect in K+ with the PDG rates, this can easily be due:
to phase space ambiguities. On the other hand, there is a significant Al = 3
amplitude, comparable to that in K — 2x.

1.1.2. Slopes: the non-symmetric amplitudes
In a linear approximation, the amplitudes are of the form

A0 = AV + o}f%y) + AT + ofy) + A5

Table 2
I = 3 contribution
average: ﬂ
(As/A1)RL (43/A1K, 4312/ 4112 |
|
PDG —0.003 4 0.014 —0.020 - 0.006 —0.012 4 0.007 |
Kellett 3.019 4 0.028 —0.013 4 0.023 0.003 + 0.018
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Table 3
Evaluation of the transition amplitude strengths

xﬁm\m\xﬁw\m m»w\w\kﬁw\w A &w\w\hw\w
—0.061 4+ 0.010 —0.013 + 0.005 _ 0.010 4 0.006
| PDG
—0.064 + 0.008 assumed absent
; —0.059 4 0.037 0.0 +0.012 ‘ 0.018 4- 0.014
Kellett
—0.059 + 0.034 assumed absent

A2 = 411 — Joi’%y) — 34331 — o) +
+ a0y + 34§
2 arme — 411+ ofy) — 3410 + o) +
+ 34200y — 2457

The I = 2 amplitude arises from both |4I| = 2 and § transitions, but they
cannot be distinguished except in comparison with the K; decay. The I =3
final state affects the slope only through the normalization factor. In the
following analysis we assume I = 3 waves to be absent.

In Table 6 we compare the slopes using three parametrizations. We have
used PDG data [4]; a new result [8] presented at NAL is indicated in paren-
theses. The A1 = } rule requires

gt—0 == g0+ — _2g++—, (6)
The absence of I = 2 waves requires

g0+ — —9g++— (7)

Table 4
Extracted values of the slopes

ar ¢ ““ at=° oo+ —20t+-
|
—0.804 4 0.027
1 , = 7
+ oy | (Coms & 000 0.791 £ 0.037 —0.542 &+ 0.010
- @r@n | —4.79 4 0.17 168 - 0E2Y -
[T * (—5.12 1 0.09) | —4. + 0. —3.57 +0.033
0.604 + 0.023 .
1 + olss — so) - s Mo.ooe ~ 0.523 + 0.023 0.428 + 0.008
1
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Table 5
Strengths of the transition amplitudes for non-symmetric waves;
871 = (afafHi(4}e))

dr Q
1+ oy 1 + oy— d 1 4+ o(83 — 30)

P M
mm\m 0.061 + 0.033 0.039 + 0.031 0.097 + 0.033
_ O 0.240 4 0.042 0.248 + 0.048 0.192 + 0.042

and the current-current theory (to be discussed below) requires
g+0 = g0+, (8)
The ratios
7 = APofTIAY ©)

give a measure of the relative transition strengths in the non-symmetric
waves. They are shown in Table 5 where the PDG slopes have been used. If
the new value for ¢+ were used, the violation in the I = 1 state would
be increased by about 0.04. At this level the uncertainties in the reduced rates
are negligible (we used PDG), but the results clearly depend on the slope
parametrization. However, there appears to be a violation of the (4I| =%
rule in the I = 1 non-symmetric waves of the same order as in the symmetric
waves. The presence of an I = 2 final state is particularly indicated, and its
strength is apparently enchanced relative to the violation in the I = 1 state.
(Our amplitudes are all normalized to contribute with the unit relative coeffi-
cient in K9 - n+n—n0; the K; amplitude for I = 2 is os(+—0) = —Az0oa(y+ —
— y.) if AI = § is absent). However, we should perhaps make the comparison

Table 6
Data on quadratic terms

Expansion in (z, ¥) Expansion in !.m. X (z, ¥)
4 7
Mode w o a+ B ) ® x+ 8
L]
o+ —0.266 4 0.034 _ —94 + 1.2 _
| {(—0.060 4 0.010) (—2.12 + 0.36)
OO0+ —0.396 4+ 0.122 - —14 + 4 —
000 - 0.12 4-0.14 — 35 L4
—0.011 4 0.014 —0.041 4 0.023 —0.46 4 0.60 —1.76 4+ 1.00
el (0.066 4- 0.010) (0.29 + 0.45
88 — x)/2 = —0.05 1 0.04 (38 —a)f2 = —2.2 £ 1.6

v 139



in a different way. The leading term for I = 1 is a pure s wave and the leading
term for I = 2 is a combination of p waves, i.e., of the form

;ANQ 2
QM

2 = Aooa(yy — y2) = (91 — q2)gs.

If A1 = 3/2 contributes a priori with equal mﬂm:mg to both waves we would
expect
| 23223 ~ g1 — qel Iqs| B2,
where R is the interaction radius. Taking 4%/ 4}?= —0.06 and 63/>=-0.24
we find
R ~ 3.6/Mi ~ 1/my.

It is a question of intuition as to whether this is an unreasonably large value
for R.

I1.1.3. Quadratic terms

Since there has been some evidence for quadratic terms in the matrix ele-
ments we shall briefly discuss them. If we parametrize the amplitudes as in
Eq. (5), the decay distribution is

o2

22 = O (1 4 oy + (et |92+ a2 .. |

If the quadratic term in y differs significantly from ¢2/4, this is evidence
of a quadratic term in the matrix element. If these terms are important,
comparison with soft pion predictions becomes very ambiguous because the
expansion will not converge outside the physical region (Q/M ~ 1).

If there are no I = 3 final states one has the predictions

ot =04 0= 000 [o00 (10)
att= Bt = 00+ BOOY, (11)

The 41 =  rule requires the equality of (10) and (11) as well as the conditions
a0 — 00+ — (3f++=— gt+-)[2, (12)

We do not propose looking at quadratic terms to test the presence of higher
isospin transitions. However, given the suppression of these transitions in
lower order terms, it seems fair to suppose that if the above conditions are
not roughly satisfied, the extracted values for higher order coefficients can be
considered as spurious. In Table 6 we have collected some data on quadratic
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terms. The results in parentheses are recent results (for (4-—0), Ref. [8],
for (4 +—), Ref. [9]) presented at NAL; the other values are from an analysis
by Kellett [7] of earlier data (for (4-4 —) Ref. [10, 11]3, for (004 ) Ref. [12],
for (4 —0) Ref. [13], for (000) Ref. [14]).

The most compelling evidence for a quadratic term appears to be in the
(4+—0) mode. In this respect it is interesting that there is also evidence for
a quadratic term in the % decay. It has been suggested [15] that an electro-
magnetic violation of the A = } rule in K - 3x might be enhanced by the
proximity of the % pole (Fig. 1). As 5 decays to 3n via a Al = 1 transition,
this would explain the absence of a comparable Al = 2 amplitude. (However,
no similar argument is readily found for K — 2x). The # pole contributes only
to the K decay and could also account for a quadratic energy dependence
which would be absent in the K+ decay.

vy (k-q)
-
Ke (k)
I:.H«e
~ < —
ul fy 3, Alq)
(ayfe) (%)

Fig. 1. The 7 pole contribution to K;—3x.

1.2. Can the 7 pole explain the violation of |4]| = } in K — 37?

It can certainly not account for the I = 2 waves in the K+ decay. Let us
nevertheless consider in detail its contribution to the I = 1 amplitude. As it
does not contribute to the K+ decay, the 5 amplitude must contain 41 = 1

and £ parts in the ratio
s1/2 732
:\ W L7

The contribution to the K decay is then
Ay =AW+ L =3.

If A is the weak amplitude (4] = §) in the absence of the 7 pole, the relative
|AI] = % amplitude will be

A3 AV = 3ot of(4 + } )
Using the results of Table 3, we find

—0.093 + 0.011 (PDG)

Fald =1 _ 086 + 0.047 (Kellett)

3 Grauman et al., Stevens Institute of Technology, preprint SIT-P256 (1970).
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Including linear terms in the matrix element
o oy
H(*0)= 4|1 + 5yt I.Mw

we obtain an effective slope for the decay distribution
0" 0= (do + Hyoy)/(4 + .Q.av

where ¢ = ¢%*= —2¢++- is the slope in the absence of the 5 pole. Thus we
obtain a prediction

4&3 ¢
g0+ = —2gt+- = g+-0 — — (g, — o+-9), (13)

A

Before using Eq. (13) we must evaluate the measured slope in % decay
in terms of K decay variables. Here again we run into an ambiguity.
Technically, the 5 pole is evaluated by writing a dispersion relation in the
variable (3 p:)?, keeping other variables fixed. The choice of these variables
is not unique. If we keep B3 = En fixed, we may parametrize the 5 decay by

dly ~ 1 + ynoy/2
Q
Qsﬂwﬂm\©a|wﬂh@+:lu
@n

where @k and @, are the ener gy releases in K, and 7 decay, respectively
Then the effective slope to be used in Eq. (13) is

Ok g =1
e gy [1— = (Qy— :
G, ] @ 2, @y — @xr)

If instead we keep the fixed invariant

83 = (p1 + p2)?

and parametrize 5 decay by
Gy
Ay ~ 1+ == (8 — %)

8§ = (my — 2mi)[3 = sy + (m — mi)[3,
the effective slope in (13) is

o = gyl — ay(m? — m%)[6]-L.
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Table 7
Predictions for slopes in the K+ decay if [4I] = > 1/2 is due to the 5 pole:
ayfA = —0.093 £ 0.011

ar oy QM\\ 0%+ — —2g+-°

P —0.781 4 0.026

L | B 1+ —1.08 4+ 0.01 0.555 £ 0.004 | To-dor & 008

D

»

R Q —4.65 -+ 0.158

m By |1+oy_— | —440 004 ~331 £0025 | Tyt EHO

Z

> | S |1+a(ss—so)  0.452 + 0.004 0.359 + 0.006 0:581. 4:0.021

(0.622 + 0.005)

The predictions for both cases are shown in Table 7 where we have taken*
oy = —1.08 4 0.01 for dI" ~ 1 + yoy.

The predictions in parentheses obtain if the new value [8] for ¢*+—0 is used.
In all cases agreement with the experimental slopes is improved (see Table 4)
with respect to the Al = } prediction (6) (but a discrepancy remains if the
new value'of o+0 is used).

A recent experiment indicates that the 5 decay amplitude requires a quadra-
tic term?

Al > 37) ~ 1 + (—1.08 4 0.01)y -+ (0.03 4 0.03)y2
_ giving (see Eg. (5))
ay = —0.26 + 0.03.

The effect of the quadratic term on the predicted slopes in K decay is
shown in Table 8 along with the » contribution to the quadratic term in
Ky, —> (4-—0). The 5 contribution clearly cannot account for the quadratic
term (Table 6) observed in this decay.

L3. Current algebra and the AI = 3/2 amplitude

It is well known that the amplitudes for K-> 3n can be related to those
for K - 27 by means of soft pion theorems; the theorems are of the form
(16, 17]:

1 Layter J. G., Appel J. A, Kotlewski A., Lee W, Stein 8., Thaler J. J.,
Columbia University preprint (1972).
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Table 8
Predictions from 7 pole contribution with quadratic
decay distribution (E3 fixed)

H Parametrization 000+ = —2g++- 7 contribution to a{+ — )
| —0.776 + 0.029 -
=Y (—0.826 1 0.006) 0.025 + 0.003
L . (, ) 488 ok (158 0.589 + 0.070
| M ? (—4.83 + 0.043) 288 =
)
lim {mymsm| Hweek | Ky = — Au«%ua__n@..mmv“ Hweak]| K> (14)
>0 .\.a
where if 4} is a component of the I = 1 axial current,
F® = [d3z4{(x, o) (15)

is a generator of chiral SUs & 8Us. The chiral properties of the current-current
interaction are such that

E.Me" Hweak] — [T, Hveak],

where T; is a generator of isotopic spin. Since commutation with 7'; cannot
change the isospin representation of an operator, we obtain separate theorems
for the AI = } and Al = £ amplitudes.

An ambiguity arises from the fact that for AI = }, the two pions are in
an I = 0 S-wave state and the amplitude on the right-hand side of (14) has
a significant phase [1, 2]2 (80 = 44° - 5°). In the physical region for 3z
.decay phase shifts are expected to be small; thus the amplitude should be
nearly real. This problem is diminished when we study AI = § ftransitions
since the I = 2 phase shift is small [1, 2] (82 = —7.7 °4 1.2°). To the lowest
order in 432/4Y2 one obtains the predictions [18—20]

a) equality of the expressions (which vanish for 41 = §):

00 —) — (00
y, — ( ilr Ve — y(++—) — p(00+) _
y(+—0) y(000)
6y(0+)

Al 1)/jcos (8} — &%), Va=2} — " —.
2y(00) 7(+—)—»(00)

Bb) ot 0= g0+ = —2¢++— (1 — £V3).

Vs =

‘The comparison is mr,osﬁ in Tables 9 and 10. In Table 10 we have used the
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Table 9
Comparison of Al = 3/2 amplitudes with soft pion predictions: rates

_ K - 3n K —+2n
| Vi | Vs Vs Vs
_ 0.288 + 0.045. | 0.146 + 0.038
| PDG 0.195 + 0.030 0.187 + 0.001
ave: Vg = 0.217 4 0.030
0.20 -+ 0.16 ~ 0.20 + 0.19
Kellett ave: Vaoz = 0.191 4 0.015
ave: Vg, = 0.20 4 0.12

average value of V4 and V3 and the experimental value for ¢++— (Table 4)
as inpub. ‘

Recall that the absence of A > § requires Vi = Vs and V, = V3. If the
average values, Vi, and Vsz, are used, the agreement with the rate predictions
is good. Comparison with Table 4 shows that the slope prediction is also
reasonable, especially considering the uncertainties associated with the choice
of parametrization, and the 10 %, uncertainty inherent in soft pion predictions.
However, current algebra cannot explain a significant discrepancy between
o+=0 and o0+t if it is real.

Of course, the 7 contribution can be expected to be present in any case.
If A represents, say, the amplitude for (—+-0) in the absence of the 4 contribu-
tion, we have

A WA = p(+—)[2y(00) = 1 4 V(2n).
With the 7 pole included we obtain -
o/ 00+) |2 14+ V(2n)

2 = =1 V(3
At otal " Wbty T

so that
V(2r) + 1\1/2
A = ————— —1.
V(3r) 41
Table 10
Slope prediction for g*-0 = g00+
dar l+o ~+axn|~l 1 + a(ss — o)
Y @NS 3 ]
¢ _ —0.738 + 0.016 . —4.86 + 0.10 , 0.582 + 0.012 |
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The slope correction can then be calculated as in Section 2. However, the
present agreement between V(2x) and V(3x) only allows for an 7 contribution
of about 19, — the expected order of electromagnetic corrections — and the
effect on the slopes is negligible.

We are thus left with a rather unsatisfactory situation. If the  pole predic-
tions were satisfied, we would tend to favour the idea that the violation of
the AI = 1 rule is electromagnetic; agreement with current algebra predictions
would favour the opposite conclusion. Either hypothesis is partially, but not
entirely succesful. The second may be favoured since the discrepancy
o+-0 =£ g%+ is less well established than the discrepancy ¢%+ £ —2g++-,
However, it is difficult to draw a firm conclusion at present.

II. LEPTONIC DECAYS: A PROBE OF CHIRAL SYMMETRY BREAKING

We shall mainly consider the K,3 decay and more particularly the scalar,
or divergence, form factor. The decay amplitude is given by

- <m sin @ <z|VEIK > Ueyu(l + y5)Us (16)
where @ is the Fermi constant, ® the Cabibbo angle and V} = (V,)" the
hadronic strangeness changing current. Its matrix element is traditionally
written in terms of two form factors, for example

QIR R = (b + ufslt) + (b — Quf-). (D)

The normalization is chosen such that, assuming the Cabibbo theory to be
correct, f+(0) =1 in the limit of SUs symmetry. The matrix elements
of Vi between other charge states are determined from (16) by charge conju-
gation and/or the AI = % rule. I would like to stress here that the semi-leptonic
|4I]| = % rule and the Cabibbo theory of currents which incorporates it are
basic to the entire subsequent discussion which will centre on the soft pion
theorem in the K,3 decay. The failure of the soft pion theorem might be
accommodated by changing a parameter in the theory, whereas the failure
of the AI = % rule (and consequently of Cabibbo theory) would require a Te-
writing of the whole theory — and in particular would invalidate the soft
pion theorem.
The scalar form factor is a particaular combination of f. and f. which is
proportional to the matrix element of the current divergence
t i o
f®) = f+() LT " f-t) = W {x+ouVi1K) (18)
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where M and u are the K and x masses, respectively. While f,({) corresponds
to the pure spin one exchange, f(t) corresponds to the spin zero exchange.
Thus f+(¢) and f(¢) are dynamically independent amplitudes and more mc_gzm
for theoretical analysis than f., f-.

Let us recall the well-known soft pion theorem [21—23] for the K13 form
factors

fo(M2) + f(M2) = fxlfa (19)
where fx and f, are the decay constants for Kz and s, respectively. Equation
(19) may readily be expressed as a theorem for the divergence form factor

U2 fx .

M) = 1.
g = o] e

Note that: a) one expects in any case corrections of order u?; b) from
what we know about f.(f) (it is probably compatible with K* dominance
in the physical region) extrapolation to ¢ = M2 implies that f (M2) < 1 if
Eq. (19) holds; in that case the difference between (19) and (20) should be much
less than 10 9%,.

Thus we shall hereafter refer to the prediction

JM?) = fxlfa (21

as the soft pion theorem. The bulk of our discussion will be devoted to two
questions: @) why is it important to test the soft pion theorem? &) how can
it be tested, as the prediction is for a t value outside the range accessible
to experiment ?

(M) = fo(M3) + f(M?) +

11.1. Why?

!

The validity of Eq. (21) is closely related to the validity of chiral SU®SUs
as an approximate symmetry of the Lagrangian. To see this it is instructive
to recall the derivation of Eq. (19). It is based on the Ward identity

iMug) = gMunlg) — i dbweiezd(zo) {|[Ag(x), V(OE (). (22)

The amplitudes M, and M, are illustrated in Fig. 2 and 4, is the charge
lowering 4S8 = 0 axial current. In the limit g, 0, the first member on the
right in (22) vanishes and the second member reduces to (see Eq. (15))

—i|[F9(0), ViOKk)y = —i|4; (0K = kufx. (23)

The commutator (23) has been evaluated using the SUz ® SUj; algebra of
currents which is derived from Cabibbo theory on the one hand, and

147



abstraction from a free quark model on the other hand (it is of course valid
in many other models).

The soft pion prediction is obtained under the assumption that for 0 <
< @2 < u?, the amplitude M,(g) is dominated by the pion pole (Fig. 3)

<v.;.au n*(me)
iMui(q) _ . _Kx) .
Huv(g) 8, Ay (§) o (re)
* Ay (9} re
Fig. 2. Diagrammatic representation of the Fig. 3.
amplitudes M, and Mg, (Eq. (22)).
Ut o T
ulq) = 2 g {f+0) (& + @)u + f-(0) (b — )} (24)

and by equating (24) with (23) for g, 0. Thus the validity of (19) (or of (21))
appears to depend only on the nearness of the pion pole, that is, on the smal-
ness of the pion mass. Consider, however, the limit of the zero pion mass.
Then the pion decouples from the axial divergence

JouAln(@)y = —iqu|Aulm(@)> = ¢z @59 0- (25)
However, for u? = 0 the amplitude M (g) has a pole (Fig. 3) of the form

Qufz
Then in the limit g, 0, Eq. (22) becomes
@M w(q) >0 —falf+(M2) + f-(M2)1ky = 1M ,(0) — Srky.
The soft pion theorem is satisfied if and only if
M, (0) ~ 0,

{f+®) (& + Q) + () (k — Q)u}-

which will hold if the axial current is nearly conserved
S d(z) = 0.

If the smallness of the pion mass is a dynamical accident, we cannot generally
expect soft pion results to be good; on the other hand, if the smallness of the
pion mass reflects an approximate chiral symmetry of the Lagrangian we
indeed expect soft pion theorems to work.

The above considerations hold in the general case where V7 is replaced by
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any local operator. The interesting point in the K3 decay is that we can
derive an alternative soft pion theorem which conflicts with Eq. (21) if the
chiral SU; symmetry is badly broken. Consider the matrix element of the
current divergence. We obtain '

0,V 1R 0 MIHA_E@“ 8V R0y = W@%ﬁ VIR —
Jw LD, Vi1IR0). (26)
The first term on the right in (26) is given by Eq. (23); thus
(M2 — ) — M2 MINJ% QLED, VK. (27)

This agrees with Eq. (21) up to the order u?/M?2 only if the axial generator is
quasi-time independent

PO =0+ O M?),

i.e. if the current is nearly conserved. ‘

Let us now specialize to the most popular model of symmetry breaking,
the (3,3) @ (3,3) model, abstracted from free quark theory. The strong
interaction Hamiltonian is

S = Hinvariant + &Us + aoUo. (28)
The terms which break chiral SUs ® SUs transform like quark mass terms

Qs. = W&AQ.
Tn this model the correction to Eq. (27) may be explicitly evaluated
M2
s =20 ey o), (29)
M2— 12 fa ex
where the parameters
en = —(|/2 20 + e8)]|/3 (30)

ex = —(|/2 e0 — 8/2)/]/3
measure the breaking of the chiral symmetry in the Hamiltonian. Ordinary
8Uj; requires exfex ~ 1, while the chiral SU; requires ¢; ~ 0. If the latter
situation does not hold, there is a conflict between (29) and (21) and the soft
pion technique is clearly not a valid procedure. This is what was meant by
its failure requiring the change of a parameter: the ratio eafex.
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11.2. moi..v

In order to test the prediction (21) we must be able to extrapolate from
¢ — M2 to the experimentally accessible region mj; < t< (M — u)?. First
we note that the K3 data, which measure the vector form factor f.(t), deter-
mine the ratio (by comparison with the K2 and the 7 decay rates)

fr
= _1.27 + 0.03. (31
faf+(0) v
Since from the definition (18)
f(0) = f+(0), (32)
we find that
J(M?)
= 1.27 4- 0.03 33
f(0) o

thus the scalar form factor is expected to increase with ¢; in a linear approxi-
mation

J(&) = fO)[1 + Zot[p] (34)
we find
Ao = 0.02. (35)

However, if this simple parametrization should fail, we have not shown that
the soft pion theorem fails. :

11.2.1. Ward identities

In order to learn more about the extrapolation to the physical region, many
authors® have studied the three point function F(g%, k2, t) together with the
two point (spectral) functions 4;(p), which are defined in Fig. 4, where

M(g2, 12, t) = w2fzM2fRF (g k2, 1) (p® — ¢?) (M2 — B?),

Jr= A, JE = A} —i4], I = V. (36)

o

5 For a review of Kz and an extensive list of references, see [24]. For quadratie
expansions see [25], also Kang K., Pham X. Y., Pond P, CERN preprint TH.
1655 (1973). For more recent work on bounds see references listed in Proceedings of
the XVI International Conference on High Energy Physics. Vol. 2 (1972), 237; Okubo
8., Ueda Y., Gdteborg preprint (1973) and [26].
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Fig. 4 Diagrammatic representation of the three-point function (a) and of the two-point
(spectral) functions (b) for divergence operators.

Chiral symmetry is assumed to be broken as in Eq. (28). Then the two point
functions satisfy the low energy theorems

44(0) = 26U, , (37)
where see Eq. (30)
Uz = /200 + Us (38)
Uk = |/2 Us — Usj2
Uy=Usr— Ug, & = &z — ¢k.

Now the three point function of Fig. 4 reduces to the divergence form factor
when we take g% and k2 to the pion and kaon mass shells, respectively

F(2, M2, t) = (M* — p2)f(t). (39)

Furthermore it is related to the spectral functions by the Ward identities;
if we take the various momenta in Fig. 4a to zero, we obtain the low energy
theorems

0: F(O, 8¢ € =M1k 40— dxit) 40
s 03 FO,6,) = =~ A0 = Ak, ()
—(t—1?) | & Ex
Iy 0: F(t,0,8) = “EAt) — — A0, (40b)
Frfap? £x &k
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. —(t— M) (¢ — p?) |ea EK
(k— qlu—>0: F(t,1,0) = Mo fx MMR:AS — MMB&QV . {40c¢)

If we now assume that a) the amplitude F(g?, k2, t) is dominated by the = and
K poles in the ¢2 and %2 channels, and further that b) the propagators 4, and
Ayx are pole dominated, we may solve the Ward identities (40) for f(¢) and
A,(t) over the range of ¢t for which pole dominance is expected to be valid
(say, 0 St < M2). We obtain

Ault) = (M x — p?fz) (fx — fa)/(1 — o) (41)
f@) = (1 —at)? (42)

.

for 0 <t < M2, and with
o = (fx — f)(M3fx — p¥fz) = (1GeV)-1 (43)

and the further conditions

fO)y=2=1 (44)
where
B
MY (45)
erx P

Thus with no a priori assumptions regarding the  dependence we have obtained
from pole dominance

a) agreement with the soft pion theorem; from (42)

e — s — e T,
Iz
b) » dominance of f(¢) with a reasonable » mass (cf. (42—43)).
c) the Gell —-Mann—0Oakes—Renner [27] (GMOR) symmetry breaking
solution 2 = 1, which implies a near chiral SU; symmetry
exfex <L 1.

However, if we also consider Ward identities involving ¥V, rather than
ouVyu, @ and K pole dominances require

f+) =1, 0<ts M2,

which is violated by about 309%,. Since this is just the size of the effect we
have determined in Eq. (42), the result may be meaningless. Our assumptions
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are clearly too strong. What is usually done is a linear or quadratic expansion
of the three point function in the variables k2, ¢%, ¢ = (k — ¢)%, with the pole
terms (including a » pole) separated out. This procedure is unsatisfactory for
several reasons

a) one does not know where to stop the expansion; this problem is particularly
acute in the pion channel, since the 3z cut is reached as ¢ - M? in Egs. (40b)
and (40¢);

b) some @ priori assumption about the ¢ channel behaviour is necessary in
order to obtain predictions. One would like to have predictions which depend
only on the chiral symmetry breaking, as this is what we are trying to test;.
K pole dominance as well as n pole dominance is related to chiral sym-
metry breaking; pole dominance in the ¢ channel is not.

Ecker [28, 29] has removed the first difficulty by using dispersion relations:
— and arguing that certain cut contributions are small — rather than by
cutting off the momentum expansion at an arbitrary order. He must assume
unsubtracted spectral functions, and problem b) remains.

11.2.2. Bounds

A recent development’ which may help to resolve the above diffi-
culties is the derivation of rigorous bounds on f(f) under a few well defined
assumptions. Li and Pagels first pointed out that the positive definite
property of the absorptive part g.(f) of the spectral function 4.(f) allows one
to bound gx(f) in terms of its lowest lying contribution, which is the K= state

exlt) = K@D, ¢ = (M + p)?, (46)

where K(t) is a kinematic factor. Then if A,(t) is unsubtracted and 4.(0) is
known or bounded from above, Eq. (46) can be used to bound f(t) in the phy-
sical region in terms of

ds
A,(0) = lal ex(t).

Now if we assume pole dominance for the pion and the kaon spectral functions:
(cf. Eq. (37))

BXOV = Sm\w = Mma. Aﬁav 1= 7, Nu
we may determine the ratio
Aﬁxv .\.k
=z
{uz)  Ja
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which may be used in (38) to express 4,(0) as a function of z. If we take the
GMOR solution (44) for = we have determined 4,(0). Or, assuming only
£nfex > 0 (recall that SUs requires &; = £x; here we assume a common sign,
we obtain an upper bound for 4,(0).

Using techniques developed by Okubo and Shih, Bourrely [30] derived
the bounds shown in Fig. 6 under the above assumptions (with exfex > 0 only)
and the additional constraint that f(tf) must satisfy the soft pion theorem.
If this constraint is dropped, the bounds are weakened, and f(f) may have
a slightly negative slope. However, if the K= phase shift information is included,
the slope is again constrained to be positive.

11.2.3. Subtracted spectral functions

Tt has been objected that the assumption of unsubtracted spectral
functions is too strong. Again, abstracting from a free quark model$, we expect
two subtractions in the 4;. Shih and Okubo have considered the case of
one or two subtractions and, assuming only that A4,(f) has a Breit-Wigner
form in the region of the » mass, have found again that a positive slope is
required if the soft pion theorem is to be satisfied. Similar results are obtained
under the assumption that the absorptive part of f(f) changes sign no more
than once on the cut. No assumption of the type of symmetry breaking is
needed.

Here again we have resorted to some a priori assumptions — however,
weak — of the ¢ channel behaviour. Can we replace these with assumptions
directly related to chiral symmetry breaking? The answer is yes — with the
help of the Ward identities (40). Let us first state our assumptions. We abstract
the high energy behaviour as well as the chiral symmetry breaking from
free quark theory and assume
.a) (3, 3) ® (3, 3) symmetry breaking (Eq. (28));

b) A4; requires at most two subtractions; then we may write for the pion and
kaon spectral functions

fim .
Ay = ———— + ag + bit + B;(t) for i =, K, 47)
m; — 1
. . Q“s
‘where a; and b; are arbitrary subtraction constants and c;(f) = ) X
o) . o
X j is the contribution from the cut;

& See, for example: Fritzsch H., Gell-Mann M., Proceedings of the International
-Conference on Duality and Symmetry. Tel Aviv 1971.
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Fig. 5. Bounds for the divergence form Fig. 6. Dalitz plot results [31, 32)7 for the
factor in K,z assuming two subtractions divergence form factor in Kys; the shaded
for the spectral functions, pion pole domi-  area [30] covers the allowed area, assuming
nance at the zero pion mass and, at most 4. unsubtracted, 4- and 4k pole domina-
100 9, (a) or 30 %, (b) violation of kaon pole  ted, (3,3) @ (3,3) symmetry breaking and
dominance at zero kaon mass. The cut the validity of the soft pion theorem.
contributions are bounded by |Ca( 3_ < _Qx

Fxfi0) and _Q=_ < (CxfaMRg)2, with #QL =1

or 0.33(b).

¢) the three point function requires at most one subtraction in ¢ and in £%;
then we may write

F(g?, k2, t) = (M2 — )f(t) + Ebu@ﬁ ) + Ll Dg(k2,t) +
¥ Mk
+ (2 — @) (M2 — B)D(g%, k2, §)| M2 fxp’fa (48)
with Di(s, t) = (M2 — 1) [Val)fs + sCils, 1)), i = =, K (49)

V(t) measures the violation of the pole dominance in the s channel at s = 0
when the other particle is on shell, and
AbD(s', t)ds’

Ci(t) = i (50)

is a cut contribution.
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Finally, we make the basic assumption which we started out to test; we
assume

d) the validity of the soft pion theorem for the three point function
F(O, 12, 1) ~ F(u2, k2, t), (51)
which implies in Eq. (48) ’
D,(0,1) = Va(t) = D(0, k2, 1) = 0.

A number of subtraction terms are thus eliminated; we eliminate others by
solving the Ward identities Eq. (40) for the expression:

A(t) = (R2[An(t) — Ax(0)] — HAls?) — Ax(OHp2(E — 12).

Since A(t) does not depend on the subtraction constants

_ t')dt’

A() = ox(t")

P — @) (¢ — 1)

it is suitable for bounding f(t) with the help of the inequality (46). The explicit
solution of the Ward identities allows us to express A(t) in terms of f(¢), Vk(),
f(u?), the symmetry breaking parameter , and the cut contributions Cr (2, f)
and Cg(t), Egs. (47), (49). Let us first assume that only f(f) is unknown.

The methods developed by Bourely [30] allow us to bound f(¢) in terms
" of A(t')

FuA(), fM2)] < f) < FolA(E), fL3)]- (52)

f(M?) is given as a function of z by the soft pion theorem, Eq. (29). Since
A(#) depends on f('), we first take ¢ =t and solve (52) for bounds on f(t).
Now A(t') decreases as f(i') increases. So we next take ¢’ = &y in Eq. (52), where
the lower bound on f(to) is the one which minimizes A(te) and consequently
minimizes F» and maximizes Fy. This procedure may be iterated until the
bounds obtained for f(t) converge.

What should we use as input for the other parameters?

a) f(u?): the dependence is very weak; we take f(u?)/f(0) < 2 as a starting
assumption (there is also a very weak dependence on f(0); we take f(0) = 1);

b) cut contributions: below the threshold the cut may be expanded in a poly-
nomial

O?) = 3, C (R M) (53)
we take Mz = 1 GeV and |Ca(t)] < f(0)fx for the three point function, [Cp| <
< fLM3 for the two point function. This is simply the statement that if the
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cut contribution is dominated by a resonance, its coupling to the axial current
is not enhanced relative to the kaon coupling; if there is no resonance we
expect three-body phase space effects to suppress the cut contribution further;

¢) Vk(t): we assume that kaon pole dominance is not violated by more
than 1009, ; then : . :

. V() < f(0)

d) the symmetry breaking parameter z: assumption c), together with the
Ward identities implies

z[f(0) > 0.5.
A further constraint from the Ward identities is
M2
¥
If we reason as in b), namely if we assume that the cut contribution in the
pion channel is not enhanced, we obtain

x = f(0) — C(32, 0).

zf(0) <4

(recall that the GMOR' solution is z = 1).

With the above assumptions we obtain the bounds of Fig. 5a, where we
also show the improvement obtained if we restrict = to values closer to the
GMOR value. However, Vx(0) and Vg(u?) are also determined by the Ward
identities as a function of x. In the range 0.9 < z < 1.5 we obtain V(0) =
~ V(u2), |V(0)] <0.4f(0). Thus, saturation of the corresponding bounds in
Fig. 2.4a would require Vk(f) to be flat near the origin and rapidly rise by
a factor of two or more in the physical region. In other words, unless the
amplitude which violates kaon pole dominance has an anomalous behaviour
as a function of the momentum carried by the vector current, near chiral
symmetry requires that it be considerably less than 100 %.

In Fig. 5b, we show bounds obtained if a 30 %, violation is assumed: |Vk(f)] <
< 0.33 f(0). This assumption restricts (via the Ward identities) x to the range
0.8 <z <14, .

Finally we note that the GMOR solution z ~ 1 implies that the breaking
of the full chiral SUs symmetry in the Lagrangian is not worse than the
breaking of ordinary SUs (lex| = lez])- If we assume, say, 30 9, symmetry
breaking effects, we should have a corresponding suppression of the cut
contribution in the K channel (since only the K is coupled in the symmetry
limit). We take in Eq. (53)

|Ca(t)] < 0.33 fxf(0) for n.:m three point function
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Table 11
Bounds with two substractions; di is defined as in Fig 5.
Assumptions ~

Valt) = 0, {(0) = 1 | = %o |

[V xt)] IOx = “ max min | max min | [Vx(0)] A et |
<1 <1 — 3 05 0.045 —0.018 < 0.83 V < 0.81

<1 <1 09-15 - - 0.037 —0.008 < 0.38 < 0.39

< 0.33 <1 — 0.8 1.4 0.038 —0.004 < 0.33 _ < 0.33

< 0.33 < 0.33 — 0.8 1.4 0.033 0.002 < 0.32 # < 0.32

|Cal < (0.33 fx)2M?% for the two point function

and obtain the tinghter bounds shown in Fig. 5b.

Our results are summarized in Table 11, where we have indicated bounds on
the average slope over the physical region (not the slope at the origin). We
should also remark that if we allow a 109, violation of the pion pole dominance
(Eq. (51)) the effect on the bounds is negligible.

To conclude it appears that an observed slope as low as 2o = —0.01 would
be difficult to reconcile with near chiral SUs symmetry (z = 1). If the breaking
of chiral SUs ® SUs has any meaning as an approximate symmetry of strong
interactions, a positive slope is required for the divergence form factor.

11.3. The K3 data

Determination of f(t) from three recent experiments [31, 32]7 are shown
in Fig. 6. The newest results from the SLAC—SANTA Cruz Collaboration?
appear compatible with a smooth extrapolation to the soft pion point, although
they are systematically higher than the upper bound based on unsubtracted
spectral functions. These bounds are- quite stringent (dp =~ 0.015 + 0.005);
the SLAC data are probably consistent with the bounds of Fig. 5, in contrast
with the earlier data. In Table 12 [33, 34] we list values of 4 extracted from
Dalitz plot analyses under the constraint f(0) = f+(0).

7 Donaldson G., Fryberger D., Hitlin D, Lin J., Meyer B., Piccioni R,
Rothenberg A., Uggla D., Wojeicki 8,,Dorfan D., SLAC—PUB-1254 (T-E) 1973.
SLAC—Santa Cruz Collaboration. The results are modified relative to those presented
[38] at NAL mainly by the inclusion of radiative corrections which were found to be
important at a low ¢. In this respect, it is interesting to note that many polarization
experiments, especially for Kj decay, were weighted towards low ¢ values (cf. Ref.

[14]).
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Table 12
Dalitz plot results

Ao _ At
_ Previous world ave. [24] —0.038 + 0.020 A 0 .043 + 0.017
K., Ankenbrandt et al. [33] —0.026 + 0.014 0.024 + 0.019
Chiang et al. {34] +0.02 + 0.02 Ay = A. =0.03

m Albrow et al. [31]} —0.043 + 0.039 0.085 4 0.015

K. | Donaldson et al. (see the +0.020 + 0.003 w 0.030 4 0.003
| note 7) f
_ i

Polarization measurements have consistently given large negative values:
[3, 24—26] of &(t) (around —1) which implies 2o <0 for 2; < 0.05. A recent
K, experiment gives a somewhat higher result [35]

£(0) = —0.385 — 6.04; + 0.105 (54)

if f and f; are assumed linear. However, a negative slope for f is still preferred.
From (54) and (18) we obtain

o = —0.0329 + 0.4881, - 0.0090. (55)

The values of A, determined from K;3 decay have varied [3, 24—26]
between 0.017 and 0.055 but the world averages [3] 2= 0.031 4 0.004 from

s A= 0.033 4- 0.003 from K3 are compatible with a new precise result.
from the CERN-Heidelberg collaboration®

0.031 -+ 0.0025. (56)

Tor comparison, we have listed in Table 12 values of %+ evaluated together
with 4o in the K3 Dalitz plot analyses.

Using the value (56) in Eq. (55) we obtain for the slope of the divergence
form factor Jg= —0.018 + 0.001.

11.4. K. form factors

Another test of the chiral symmetry is in the study of the K4 form factors.
In this case there are three observable form factors which the soft pion theo-
rems relate to the K3 form factors at points outside the K.s decay region.
Extrapolation to the physical region is more complicated here because the

8 Eisele F., private communication and Steinberger J., preceding lecture.
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form factors dependen on three kinematic variables. However, if constant
form factors are assumed, the predictions are satisfied to within twenty or
thirty per cent.

Another feature of K, is that it allows the determination of the mn phase
shift very near threshold. This permits another test of chiral symmetry: the
Weinberg prediction [36] for the I = 0 s wave scattering length ag = 0.02:5,

62- &, ENERGY DEPENDENCE OF 62-5)

70° |+

¢ Pais -Treiman u SACLAY
B P ENEVA

50 o Fit( form factors + phase shifts) G p
0 Pennsylvania

S b
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1
280 L300 320 340 360
Mrn(MeV)

Fig. 7. Experimental determinations [37, 38) and theoretical predictions- based on the
Weinberg low energy theorem [36].

Results of phase shift measurements [37, 38] are shown in Fig. 7. The
central curve corresponds to a simple parametrization satisfying the Weinberg
contraints; the upper and lover curves are the extrems of recent theoretical
predictions?®.

One should be cautious, however, in drawing conclusions since the real
test of chiral symmetry again lies not in a particular parametrization. Any
scattering amplitude which is consistent with the Weiberg constraints (again
at non-physical points) is consistent with chiral symmetry. Furthermore,
at the present level of the data, a reliable value for the scattering length cannot
be extracted.

% See, Schmid Ch., Proceedings Amsterdam Conference on Elementary Particles,
(1971), 265.
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III. RARE LEPTONIC DECAY MODES:
48 =1, 4@ =0

The interest in leptonic K decays with no charge exchange to the leptons
jies in the extremely low limits that are being found for these rates. The best
example is K; — pu. .

There is a controversy over the actual value for this decay rate; two conflic-
ting experiments give for the branching ratio [39]:

Ti(up) T < 1.8 X 1072 (2.5 X 10-9) (57)
and 10 .
I'rup)/ T = (1.1%%) x 10-8 (1.5 X 10-8) (58)

at the 90 9, confidence level. The values in parentheses obtain if the new
value [40, 41] for |4*-]|, significantly higher than the previous world average,
is used.

The first result is in conflict with the well-known unitarity limit. The decay
Ky, - pu can proceed electromagnetically via a two photon exchange. Since
the rate for Kz — yy is known, and the amplitude for yy — up is determined
by quantum electrodynamics, this contribution to the absorptive part (Fig. 8)

Fig. 8. Dominant contribution to the ab-
sorptive amplitude for Kr —> ppu.

!

|

i A
!

!

is completely determined. Other contributions to the absorptive part have
been carefully studied and found to be negligible. Since there is no interference
with the dispersive part of the amplitude, this sets a lower bound

Tp(up) T > (6 4 0.4) X 10-° (59)

in conflict with (57).

In the light of this conflict, it has been conjectured [42] that a very strong
amplitude for Ky - uu, together with a maximal violation of CP in this mode
andfor K > yy, could provide a cancellation of the absorptive part of Ko uu
via the small admixture of K, in K. If this were the case, one would observe

10 Caritheres W.C., Modis T., Nygren D.R., Pun T.P.,Schwatz E. L., Sticker
H., Steinberger J., Weilhammer P., Christenson J. H., preprint Columbia Uni-
versity 1973.
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a very large partial rate for K-> pu. 1f the above mechanism is to account
for a K. (uu) branching ratio as low as 1.8 X 10-9, we must have, on the
grounds of unitarity alone [43]

Is(uu)/T's 2 2 X 1077 (60)

Trom dynamical considerations, however, we expect it more likely that
[42, 44]

Is(uu)T's = 5 x 1077 (61)

while the simplest interaction proposed to account for the above mechanism
requires [44]11

Ts(up)[Ts = 10 x 107, (62)

In a recent experiment [45] the decay K, — uu was unsucecesfully searched
for, giving an upper bound

Ts{pu)/l's < 3.1 X 10-7 (63)

which all but rules out the above mechanism.

In view of the more recent result (58) on Kp —> uy, it may well be that
there is no conflict with the unitarity limit. I would like to point out neverthe-
less that the lower bounds (60—62) are extremely sensitive to the exact
value of the K, branching ratio. If the value in parantheses in (87) 1s taken,
the bounds (60— 62) become respectively

0.5 x 1077
NJMC«.SVEJM > { 3 x 107
6 x 10-7.

If instead we havel?
T(pw)Ts < 3.5 X 1079
the bounds are lowered to

< 108
.NWC\:Sv\NJM = 0.9 x 107
3 x 10-7.

11 Wolfenstein L., University of Michigan preprint 1971, unpublished.

12 The authors of Ref. [39] are re-examining their data and expect a final limit (to be
published) somewhat higher than those in Eq. (57). Wenzel A, private communication.
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The point is that if the final answer should turn out to be larger than the
original Berkeley result, but still in conflict with unitarity, the question
of the K1, K5 cancellation mechanism would have to be reconsidered.

In any case the K — uu branching ratio is very small, and in particular
the real or dispersive amplitude must be small. This result places considerable
constraints on the gauge theories which unify weak and electromagnetic
interactions and allow for the possibllity of renormalization. For these the-
ories to work the photon and the intermediate bosons must couple to currents
which have a group structure; the current defined by the commutator of two
coupled currents

(i), T2)1(o — yo) = I3 — y)

must also couple. The commutator of the usual charged Cabibbo currents is
a neutral current containing a A8 = 1 part. Various models have been pro-
posed to eliminate this piece so as to avoid the AS = 1, 4Q = 0 currents in
the lowest order. However, the problem does not end here; in these theories,
higher order corrections to weak processes are of the order @, not G2. This
is unacceptable for Kp—> puu where the amplitude is at most of the order
#2G with respect to, say, K+ lv.

To eliminate the lowest order couplings with 48 =1, 4Q =0, Weinberg
[46] invoked the Glashow-Iliopoulos-Maiani mechanism [47]. The usual Ca-
bibbo current is of the form

J+ ~ Pleos @ n + sin O 4) (64)
and the commutator of J+ with J— contains the term |
Jo ~ (7ih + Fu) sin O cos 6. , (65)
The trick is to add an extra ‘“charmed* quark with the coupling
J+ = p'(A cos O — nsin 0),

then the 7A - Jn term in the commutator of J+' with its Hermitian conjugate
just cancels the contribution (65).

This cancellation would work all orders if the p and p’ masses were de-
generate. We know that this cannot be the case; the observed hadron spectrum
requires that the p'mass be considerably higher than the (p, n, 4) masses.
However, in order not to have a K -> pu amplitude of the order a¥, we must
have at least a partial concellation; this causes the p, p’ mass difference not
to be too large.

An explicit calculation of the graph of Fig. 9 has been done by Lee, Pri-
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mack and Trieman!? in an eight-quark version of the Georgi-Glashow model
[48] in which the charged currents are constructed so that their commutator
is just the electromagnetic current. Taking the branching ratio to be the
unitarity limit, Eq. (59), they find

n W
B
K° .
PP v
w -
~ u
Fig. 9. Diagrams contributing to the ampli-
+ tude for K — pu in the order Goa.
2 2
(my — my) My
2P n—- <5 X 1079,
My Myr

where M is the mass of the intermediate boson. A similar result is expected
in the Weinberg model.

Of course, once the Kr({uu) branching ratio is established — and provided
it satisfies the unitarity limit — one must really subtract off the absorptive
contribution before comparison with higher order effects of this type. We
do not know what the quark mass is (perhaps a mass as low as 300 MeV is
acceptable for p) but we do know that if the charmed quarks are forced to be
nearly degenerate with the usual ones, we will have a hard time understanding
the hadron spectrum. Therefore a value of the branching ratio much lower
than that in Eq. (58) would be a source of trouble for the gauge models.
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