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DETERMINATION OF RESONANCE PARAMETERS
BY THE STATISTICAL EXTRAPOLATION METHOD:

ANNA NOGOVA*, Bratislava

After a brief review we describe a new method for the determination
of resonance parameters from partial wave amplitudes. In contradiction
to previous methods the one described in the talk determines directly the
position of the resonance pole at the second Riemann sheet. The method is
based on Cutkosky’s statistical approach to the represenation of data by an
analytic function. The resulting value of the resonance pole position is free
of the ambiguities due to specific background parametrization, which is usual
mn the standatd methods for the determination of resonance parameters.

I. INTRODUCTION

Everybody knows what a resonance is but nobody knows it precisely. The
same situation is with the resonance parameters. In some cases it is easy
to get a rough estimate of the position and the width by merely glancing
through the data. It is more difficult to determine these parameters accura-
tely. There are still cases when it is difficult to say whether there is a resonance
or not. I will describe three types of methods which have been used so far
for the determination of resonance parameters. In the first part of this talk
I shall speak about the first two methods and in the second part I will des-
cribe a method based on Cutkosky's statistical approach and illustrate it by
the case of the best known A (1236) resonance.

II. SOME OF THE METHODS FOR DETERMINING
RESONANCE PARAMETERS

The only case which is absolutely clear is the case of a simple nonrelati-
vistic Breit-Wigner formula
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If this is true, the width can be determined in three slightly different ways:
1. Width at the half maximum of the cross section. From eq. (1) it follows
that
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Since the total cross section is proportional to sin24, it is easy to find from
(2) that the peak, which has its maximum at Mp, has the width at the half
maximum equal to I.

2. From the phase shift. The mass of a resonance is at the energy where
the phase shift 6(E) passes through 90°. If 8(E:) = 45°, 6(E>2) = 135°, then
the width is equal to E2 — E1. .

3. From the derivative of the phase shift at the resonance. From (1) it
follows that
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and hence
(d cotgd)/dM = — 2/I".

The trouble with the simplest Breit-Wigner given above is that it does not
have the threshold behaviour built in and consequently it does not fit the
data. :

‘The parametrization which is most frequently used changes the parameter
I" from a constant to a function of energy. Various forms of I' (E) are currently
used. With a suitable I'(E) one can get the correct threshold behaviour and
with a sufficient number of parameters one can naturally fit the data, howe-
ver, with certain drawbacks. Using the three above rentioned methods we get
different resonance parameters. In this situation one should use some unam-
biguous definition of resonance parameters. In this situation one wro:.E use
some unambiguous definition of resonance parameters. In the following we
shall define the resonance as a pole on the second Riemann sheet. This
definition is unambigaous but is not easy to use. If one wants to get the
resonance parameters one has to get to the second sheet and to find where
the pole is. .

The method which is presently being used is quite simple. One applies
a resonance formula with a correct analytic structure to two Riemann sheets
with the pole explicitely on the second sheet and which still contains other
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parameters (threshold behaviour). Then one fits the data and from the resul
one immediately gets the position of the pole. This is actually the method
which was recently used by Ball et al. [1]. The authors claim and prove it
in a sense by calculation that the pole positions obtained with a set of rea-
sonably chosen resonance formulae with a two sheet structure are more or ;
less independent from the formulae used. The trouble with this approach is £
simple. The approach relies to a great extent on an ill-defined notion of the
reasonable formula. In fact if this reasonableness assumption is abandoned
one can prove that the determination of the pole position is a rather unstable
problem. Now I shall show with the help of a simplified example why it is so.
Since later on we shall map the second sheet onto the unit disc I shall speak
about the function analytic in the unit disc.

Let f(z) be a function analytic in the unit disc apart from a single pole:
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Let the data be given on an arc L with an error «.
Let us now construct the function
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where g, 42 are two numbers selected beforehand and arbitrarily.

The function g(z) is known also with an error of the order . Now, according
to a well-known mathematical theorem the function g(z) can be fitted by
some suitable polynomial to the desirable accuracy . Hence it follows that
we have two functions with different pole positions
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which fit the data equally well. The two functions will be, of course, signi-
ficantly different on the rest of the unit circle.

This shows immediately that one has to make a tacit assumption about
the behaviour of the amplitude on the boundary, where no data are known.
If one wants to have reasonable estimates of the errors of the parametrization
found, one shlould use a method which is truly statistical. In the following
I shall describe one of these methods.
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III. THE STATISTICAL EXTRAPOLATION METHOD

The method which we have used for the determination of 4 (1236) reso-
nance parameters is based on Cutkosky's statistical approach [2] and was
recently elaborated by Pdzman et. al. [3]

I am not going to give the general description of the method, but I shall
demonstrate it directly for the case of the 4 (1236) resonance.

The analytic structure of the partial wave 2N amplitude in the s-plane
is well known. It has the physical right-hand cut starting at s = (M + u)?,
(M, p are nucleon and pion masses) and left-hand cuts consisting of the cut
along the circle of the radius M2 — u? and two separate cuts along the real
axis. We can conformally map the whole s-plane aparat from the inner
part of the circle onto a unit disc. Naturally, the unit circle of this new plane
(let us call it the z plane) will correspond to all cuts of the s-plane (except
those cuts in the s-plane which are inside the circle). In our case the mapping
was done in such a way that the right-hand cut of the s-plane was mapped
onto the arcs (0°, 97.4°) and (—97.4°, 0°) on the unit circle. The left-hand
cuts were mapped onto the arcs (97.4°, 180°) and (—180°, —97.4°). The data
which we have used (CERN 67 analysis) are given on a part of the right-
hand cut. This corresponds to the arcs (52.6°, 97.4°) and (—97.4°, —52.6°)
in the z-plane. In the part of the unit circle (—52.5°, 52.6°) corresponding
to the low energy region we can use scattering length parametrization. We
do not know the values of the amplitude in the remaining part of the circle
corresponding to the left-hand cuts. Here we shall use some hypothesis with
a great error.

The same is true for the amplitude on the second Riemann sheet, because
its analytic structure is the same as for the amplitude on the first Riemann
sheet. We use the same mapping and calculate the values of the second sheet
amplitude fI from the equation
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where fI is the amplitude on the first Riemann sheet and ¢ is the CMS mo-
mentum.

Now we can say that we have a function fI which is analyvtic (except for
possible poles) inside a unit disc and we know its values and errors along
the boundary. We want to test whwther such a function has some singularities
or not.

If there are no poles inside, we can expand the function into the Laurent
series, without singular terms:
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If there is a pair of complex conjugated poles (which would correspond to
the presence of a resonance), we can write
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After the expansion of the pole terms
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Let us define
1

Qn = — § f(z) 22 1dz. . (3)
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If we konw the function f1I(z) exactly, then @, = 0, for the case of no singu-
larities and @, = ad-®+) | g*p*-(+D  if there is & pair of complex conju-
gated poles. Since we know the values of fIi(z) only with a given accuracy,
we can say according to the statistical approach that @, are random distri-
buted variables with mean values equal to zero (if there are no singularities)
or o—®Fl) L g¥i*-m+D)  (the pair of poles). We construct the y2 function

1y = 3 1Qu — 2k — apE-tin 2 (4)
1

and by minimizing it we find the parameters a; 1. 2 is a position of a pole in
the z-plane. Doing the inverse mapping we find its position in the s-plane
and from that it is easy to determine the resonance paramseters.

We did the minimization of ;3 with N = 8. For the calculation of @, we
have used instead of (3) a slightly modified rormula

1
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where w(z) is a weight function constructed from errors. It would suppress
the contribution from those parts of the boundry where the function is not
known (left-hand cuts). The values of @, were of the order 102, which means
that the function is not without singularities. The data indicate clearly the
presence of a pair of compex conjugated poles. The argument in more detail
proceeds as follows. We first calculate the value of

7= Mwﬁ@: 2.
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For N ~ 10 we obtain 2 of the order 105. This means that the function is
not analytic, since if it were, x? would be about 10. Then we assume that the
function has a pair of complex conjugated poles. We construct x2, which
tests this hypothesis, in our case it is just x* given by eq. (4). This is mini-
mized with respect to « and A. At the minimum we find 42 of the order 10—50,
which indicates that the introduction of a pair of complex conjugated poles
diminishes the 32 from 105 down to 10—102. Within the assumption made
it is thus reasonably safe to assume that the pair of complex conjugated
poles is the only statistically significant singularity on the second sheet.

So far we have only preliminary results as regards the pole position. There
appear some complications at the technical level which should first be studied
on simplified model examples. It is, for instance, not clear beforehand what
@, s are to be chosen most advantageously for the determination of resonance
parameters. The criterion for such a choice is probably the lowest sensitivity
towards the assumed behaviour of the amplitude on the (second sheet) left-
hand cut.

Our preliminary results indicate that the mass of the N33 (1236) resonance
is somewhat lower than it is generally believed. The determination based
on methods described in Sect. II. gives something between 1230 and 1236
MeV, Ball et al. [1] found 1230 MeV and our calculations give so far 1204
410 MeV.

The width is more sensitive fo fine technmical details of the calculation
and T shall rather not give too preliminary and probably misleading numbers.

We intend now to check the method on some artificial example where
the pole position is known beforehand and the phase shift is then calculated
and then the data produced this way are used as an input for the method
described above. The pole which is found is then compared with the true
position.

Apart from that we have to use the data of Carter et. al., which, as regards
the Pj3 partial wave are more accurate then the CERN 67 analysis which we
have been using so far.

And so, it is quite possible that our preliminary results will be radically
changed. Let me stress again that it was not the purpose of my talk to give
the final results but that T wanted to describe instead the method and to show
that it has a real chance to work.

The author thanks to Dr. Jan Pisat for the suggestion of the problem
and for many interesting conversations.
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