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PROTON STRUCTURE AND THE LAMB SHIFT
IN HYDROGEN-LIKE ATOMS!

EVA GAJZAGO*, Budapest

The present state of the Lamb shift in hydrogen and muonic is briefly
reviewed. Attention is paid particularly to the contributions due to the
polarizability of the proton and to the structure of the proton as revealed by
the recent experiments concerning the deep inelastic electron-proton scat-
tering.

1. INTRODUCTION

Historically it was the measurement of the 2812 and 2Py level displace-
ment in the hydrogen atom which led to the development of quantum electro-
dynamics. More recently this testing ground has been extended to other
hydrogenic atoms including positronium (e*e”) muonium (u*e-), and muonic
hydrogen (up). We are interested here in the influence of the proton struc-
ture on the spectra of the ordinary and muonic hydrogen, while the other
two are important tests of pure electrodynamical systems.

First, I would like to summarize briefly our present knowledge of the
spectra of ordinary and muonic hydrogen. In quantum electrodynamics
these systems can be treated within the Bethe-Salpeter equation (BSE), which
has the form for the hydrogen atom [1]:

dip’
(2m)t

(umP + p — m) (p— puP + M) ¥(p) = I(p,p"; P)¥P(p), (1)

where P is the four momentum of the center-of-mass, p and p’ are the re-
lative four momenta of the two particles in the initial and final states pm =
= mief(me + Mp), pyr = Mp[(me + M,). P(p) is the wave function of the rela-
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tivistic bound state (the motion of the center-of-mass has been separated),
and I(p, p'; P) denotes the sum of all the irreducible graphs.

The dominant interaction of the atom, the Coulomb potential V' = — afr
can be separated from the rest of the electromagnetic interaction most readily
if we use the radation gauge in the atomic center-of-mass system. Tha Cou-
Jomb interaction, which must be treated to all orders in the perturbation
theory, can then be separated from the Feynman propagator for the exchan-
ged photons. The remainder describes the transverse interaction:

Dt —= E s W@w:m%. ¢ va
¢ +ie lgP ,
Now, we can consider the BSE with the Coulomb kernel as the unperturbed
one, and the remainder irreducible kernels as small perturbations. Within
the BSE we get the corrections of the energy levels for the relativistic bound
system due to a small perturbation Al with the aid of the formula [1]:

in dip [ dip’

2meM, | (27 2z )4

ABy = — P o(p) Ai(p, 9’5 P) Pn(p'). (3)

The typical irreducible kernels which must be considered for the hydrogen
atom, and the corresponding order of magnitude of the corrections are given
n Fig. 1.
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Fig. 1. A — self energy; B — anomalous magnetic moment; C — vacuum polarization;.
D — recoil correction; E — finite size correction.

Thus we can see that modifications occur from the self energy correction
to the bound electron, the anomalous magnetic moment of the electron, the
vacuum polarization effects — these are the main contributions — and smaller
corrections arise from the recoil effects, finite proton size and other higher
order diagrams. The various contributing terms can be classified in terms
of the small parameters of the theory: o, me[Mp, ameRp = Rplag (where Ry
is the nuclear radius).
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The comparison of theory with experiment now shows a quite satisfectory
agreement:
Theory: 1057.91 -- 0.16 MHz
Experiment— theory: —0.01 MHz.

What can we say now about muonic hydrogen? If there were no electrons,
the treatment of the (u~p) system would be exactly the same as that of ordi-
nary hydrogen: one has only to replace the mass of the electron with that
of the muon in all formulae. However, for the so-called ,,mixed diagrams® —
diagrams containing muons and electrons — the situation is not so simple.
Tt can be shown [2], that the relevant effect of electrons is a contribution to
vacuum polarization producing a modification of te photon propagator in
a range of the order of the electron Compton wave length Z, = hfm.c. Since
% is just of the order of the Bohr-radius of the muon in muonic hydrogen
(~ hjamy,c), the u—p) system will be very sensitive for this effect. Indeed,
it has been shown [2] that main contribution to the Lamb shift in muonic
hydrogen comes from electron vacuum polarization effects (Fig. 2), while

-00112 2Ry , where Ry=-L-my«
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Fig. 2.

the usual Lamb shift graphs (muon self energy, anomalous magnetic moment,
muon vacuum polarization) give only:

AE = 5 x 10-3Ry.

II. POLARIZABILITY OF THE PROTON AND THE INELASTIC
e—p INTERACTIONS

All the above mentioned calculations contain only the static properties
of the proton. No effects of the proton dynamics are included. What we are
;interested in now is the correction to the Lamb shift in ordinary and muonic
hydrogen due to the polarizability of the proton in the field of the electron
or muon.

In the language of the BSE it means the inclusion of the kernel (see Fig. 3)
which accounts for the dynamical proton structure.
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Tt is easy to see that the result will contain an integration over the inelastic
form factors of the proton, obtained from spin independent inealstic electron-
proton scattering. We hope that this effect gives only a small correction and
the excellent agreement between theory and experiment remains. However,
we have no clear evidence that it is really true. As it happened in the problem
of the proton-neutron mass difference, some divergence problem could arise.

That is also a reason why we are interested in this problem.
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Fig. 3.

The physical idea behind the polarizability contribution is the following:
in a semi-classical picture, the polarizability of the proton means that the
jnstantanous charge and momentum distribution of the proton can follow
the circulating electron. In the limit of a completely polarizable structure,
the charge and momentum distribution could completely follow the orbital
motion of the electron, and then the proton would appear to it like a point.
Tt is easy to check that within this Jimit, the finite proton size plus the pola-
rizability of the proton result in the decrease of the energy of the atomic
level. From this we can conclude immediately that the polatizability contri-
bution always has the effect to decrease the contribution arising from the
finite nuclear size, that is, the sign of these corrections will be the opposite one.

Tirst let us consider the problem within the non-relativistic model of the
proton structure set up by Drell and Sullivan [3].

In this model the proton is composed of a particle (called a quarkette)
of the charge +-¢, the mass p and the spin 1/2, which satisfies the Schrodinger
equation and is bound to a neutral, infinitely massive center-of-force by a non
relativistic potential V(R). The infinite mass center is at the origo, R denotes
the coordinate of the quarkette and r that of the electron, which is bound
to this ,,physical proton* to form a hydrogen atom. The Hamiltonian for
the full system is (see also Fig. 4):

H = Hy(R) + Hlr) 4 Hr, R) + Hu(r, B), (4)
e’ |
H,q Hine

where: Hp = P2[2u + V(R), He = (2P + pm — afr), He = a(lfr — iz — RY),
Hu = axA(r, R); A(r, R) is the vector potential seen by the electron.

In nwwmlwmoeﬁglga excited states of the quarkette can be considered as
the polarized states of the proton and we can calculate the corresponding
contribution to the Lamb shift explicitely.
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In the first order perturbation theory only the Coulomb term makes a con-
tribution : .

vf = § a | P2(0) [2 <R,

where (R%>q is the expectation value of the squared radius in the ground

state of the quarkette. This is the well-known finite size correction which -

gives the right numerical value if we fix the quarkette orbit radius in the
ground state at the value: R ~ 2F ~ 10-2 MeV-1. Next we consider the
second order perturbation theory. There are three possibilities: 1. the second
order in H,, 2. the second order in Hj, 3. the mixed second order ~ H. Hy,.

Fig. 4.

I want just briefly to summarize the results as follows:
a. there is no contribution from the mixed term;
b. there is a small contribution from the second order magnetic interaction
which gives:
m\3
A 2 —1
M~} pp(mat) |
c. the most relevant contribution comes from the second order Coulomb
interaction, which gives:

m \3
VW ~ — (mad) X 102 |—
M

The order of magnitude of this term is:

~0.01 ppm for ordinary-
~10-4 Ry for muonic- -hydrogen.

From this we can conclude that this contribution has a relevant effect
in the case of muonic hydrogen, while it is almost negligible in the case of
the ordinary hydrogen atom.

Tt is therofore of some interest to know whether this contribution for muonie
hydrogen is measurable or not. The precision of the Lamb-Rutherford experi-
ment for muonic hydrogen is limited because of the instability of the muon.
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rder agni recisi ithin which the resonance frequen-
The order of magnitude of the precision withir q

cies can be determined is:
wl ~ 5 x 10%a2Ry.

We can see now that our estimation based on the quarkette model of the proton

is comparable with this value.

1II. THE RELATIVISTIC TREATMENT OF THE PROBLEM

We shall proceed according to the BSE, and we are interested in the pure
polarizability contribution corresponding to the irreducible kernel given in

[ < e
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Fig. 5.

Fig. 5. With the aid of the perturbation theory mentioned above we obtain
the contribution to the atomic level shift in the lowest order in o a8

iet d4 1

w0 — Lo (o ) TS, @) > (6)
(2r)3me gt ¢ — 2mey

AE, =

where: L#v = gt*(peg) + 2p,p, is the lepton part of the amplitude and
TS (¢?, v) is the symmetric or spin-independent part of the virtual forward
uv\L e

Compton amplitude, which is defined by
i

4 Mz

eiez (P | T(Ju(z) J4(0) | P).

Ty =

(» = (Pq)/M is the laboratory photon energy).
With the aid of the invariant expansion
1 My My
. Quqr L i, F P Ve
ﬁw@ﬂ v) = me — guv | T1(g% v) + 2 Fy e Qu v e q 2(q?; v)
we get

jed ds
Ay = P | ¥n(0) 2 ! {T1(g?, v) F1(g? v, m) + T (g%, v) Falg?, v m); »

(2r)m )¢

where Fi(q2, v) and Fo(g?, v) are some simple kinematic factors:
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In this expression of the level shift the integration variable — the four mo-
mentum ¢, — runs over the intergation range so that the variable ¢* may
d,om both positive and negative. Now, the amplitude T,, for the negative ¢2
is measured by combining the electroproduction experiment with the disper-
sion theory. A simple way to obtain an expression which includes only space-
like photons is to make a Wick rotation of the integration contour in the 9o

plane for @.mwom @2 If we carry out this Cottingham transformation and
change the integration variables

Qc‘|Vm®on M'Vl@nn

we get
et d4Q 1
ABy = —— [P (O) | o ——— 2 i
(@) [ Pa(0) |? @t @ + 2migo {T\(— @2 1Qo) +
+ Tao(— Q2 iQo) Fao(— 2,iQ0){ , (7)
where now @2 denotes: Q2 = Q2 + @ =¢—gf=—¢>> 0

that is ¢ < 0 and the contribution to the level shift includes only space-like
photons.

. For the @B.@:gmmm T, and T'; we can now write fixed @2 dispersion relations
in @c. . Assuming a Regge behaviour we can write an unsubtracted dispersion
relation for T» and a one-substracted dispersion relation for T .
. Q2 [ d»2ImT(q?
Ti(g?, iQo) = T1(q?, 0) i E
T ¥2(y2 4 Q7)
1 [ dv2ImTa(g2, v)

%mAmwu u.,@ﬂ_v = M lﬂ|©&| .
¥ 0

Using next the optical theorem for the Compton scattering

1 1
— Im Ti(q2, v) = — Wilg% v) 1=1,2
o

™

and carrying out the integrations over Qo and the angular direction of Q
we finally get =
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where F; and Fp are now kinematic factors, complicated fuctions of ¢+ =
= 12/Q?; @ and the lepton mass m.

~ To get the final numerical result we have to carry out the integration in
the physical region of the entire g2 — » plane. This requires the knowledge
of the electron-proton inelastic scattering data in the entire kinematic region
(2 <0, » > 1). For this purpose one can use the Breidenbach-Kuti fit [6]
of the inelastic electron-proton scattering data based on the SLAC-MIT mea-
surements.

With the aid of this fit we can calculate the numerical value of the level
shift. We find that the most relevant contribution comes from the exchange
of low energy photons of small or zero mass (@< M2, v < 1GeV). It is
therefore not surprising that the result can be expressed in terms of the dyna-
mical electric and magnetic polarizability of the proton (apo and Bpot), for
which the following sum rule holds:

. 1 [dv .
&pot + Bpoc = P 1€M or (v), (9)
where or(v) is the total cross section of the Compton scattering for real pho-
tons as a function of the laboratory photon energy. This nice relation can
be obtained by using low energy theorems and dispersion relations.
A numerical estimation for oy, and Bpor using photoproduction data up to
— 1 GeV gives the result

1
3
8M3

Xpol -+ mBE = 1.0 X 1072 cm? ~

The final result in terms of the dynamic polarizabilities of the proton is
My
AE, 0 — 2mex | Pa(0) |2 (%por + Boot) _bﬂsﬂ 4+ 2}’ (10)
which gives the numerical value
AE, ~ 54 Hz ~ 0.05 ppm
for the hydrogen atom, which is almost negligible comparet to the precision

of the measurement (~ 50 ppm).
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No divergence problem arises. This can be connected with the fact that be-

d4k
cause of the two photon and one electron propagator AE, ~ {—-, while the
PP

neutron-proton mass difference AM ~ [ k-2d%k, which is divergent for large k.
In the case of muonic hydrogen we get the result simply using the muon-
electron universality

M,
Ay ~ — 2myua | Pa(0) 2 (apor + Bpo) [In—" + 2| = 4.121 %

my ]

»x 103 MHz ~ 80 ppm

which is comparable with the precision of the measurement (100 ppm).

IV. COMMENTS AND CONCLUSIONS

-Finally T should like to mention an argument why the calculation of this
contribution to the Lamb shift of muonic hydrogen can be important. This
argument is connected with the possible existence of some muon-electron
differences. If we assume that the muon is not simply a ,,fat electron®, the
difference between these two particles is not only a difference in mass and
associated neutrinos, but there are other differences for example the muon
has a special interaction with hadrons — we can search for effects of these
differences. If there existed such 2 special muon-hadron interaction, it would
have the effect to produce anomelies in the spectra of muonic hydrogen.

A L

Fig. 6.

Assuming that the muon interacts with hadrons through the exchange
of a neutral hadron X (mass My, coupling to the muon g,y to hadrons g,x)
the contribution of this effect to the Lamb shift compared to the contribution
arising from the two-photon exchange process is (see also Fig. 6):

; hxv 167 guxgpx My Ew "
_ 5 @ my M5 ()
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Hu_.,mwmbe experimental data {5] on the parameters My, gux and gpx allow:

Ju* gpx

~~- £ 0.05 and M2 = (0.2 4+ 04) M.
(2

Thus we can conclude that using these limits the dx ration can exceed the
value 10—50 and in this case this process would have a well measurable
effect on the spectra of muonic hydrogen.

Well, this is a reason why the exact calculation of the two-photon exchange
contribution is important. We have seen that this effect gives only a correction
just comparable with the precision of the measurement. Furthermore it is
well known that other higher order electromagnetic processes give only
undetectable effects. Thus if future measurements showed a significant ano-
maly in the spectra of muonic hydrogen, it would suggest the existence of
such an anomalous muon-hadron interaction. On the other hand: if the
measurements does not give such a significant anomaly, we can — on the
basis of the estimation (11) — get stronger restrictions on the parameters
(Mx, gux, gox) of the anomalous muon-hadron interaction.
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