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UNITARY SPINORS IN THE LORENTZ GROUP!

MIKLOS HUSZAR*, Budapest

Matrix elements of the principal series of unitary representations of the
Lorentz group are investigated. For this purpose, the notion of the finite-di-
mensional spinor is generalized to the unitary case. In this basis represen-
tations take a form analogous to the three-dimensional rotation group and
are much simpler than those in angular momentum basis.

I. INTRODUCTION

The classification of all linear representations of the Lorentz group (LG)
and the solution of related fundamental problems is now well established
[1, 2, 3]. Yet in the investigations connected with relativistic expansions it
has turned out that evaluation of the matrix elements of the unitary repre-
sentations (UR) is far from trivial: the results obtained in the O(3) basis
could be given in terms of multiple sums over complicated expressions. As
a consequence of the fact that the bases O(2, 1) and E(2) can be obtained from
the O(3) basis by means of a deformation procedure within the LG, it is not
surprising that the UR do not assume a simple form in any of these bases
either [4—8]. .

In the present paper, which is a modified version of a series of works cited
in [9] it is shown that if the UR are derived in a basis that is a generalization
of the finite-dimensional spinors to the unitary case [9—12], the matrix ele-
ments assume a considerably simpler form that in any of the above bases.

A simple derivation of representations in the unitary spinor basis is rendered
possible by making use of the familiar form of the Lie algebra in which infini-
tesimal generators satisfy the commutation relations of two independent
angular momenta. In this case parameters corresponding to the two angular
momenta, are pairwise complex conjugate to each other, hence the eigenvalue
equations of the two Casimir operators are independent, and therefore four
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t:omlvw independent solutions of the differential equations can by built up
MM:SmmEa_m_% — In contrast to the case of the canonical barametrization and
¢ angular momentum basis, where the above tv 0 i e inti
bl T VO equations are intima-
By wg&csm Fao @o.ao::n the regularity requirements imposed on the repre-
sentations, a @:m.hﬁwmacs condition is obtained for Jo, the first quantum
uwz::omﬂ. characterizing an irreducible representation. The other quantum num-
€r, o, 1s continuous and takes real values for the prine; i i
neipal ser
representations. PRt ot unifery
ud,r.ao.:mw.ozn .erm Faper only this series of the UR will ke treated.
, .,:amm 1s sufficient from erm, point of view of the expansions of square integrable
unctions on the LG, since according to a theorem by Gelfand and Neu-
mark .E any such function can be expanded in terms of the UR of the princi-
pal series only, and the supplementary series does not make any contribution.

II. EVALUATION OF THE MATRIX ELEMENTS OF UNITARY
REPRESENTATIONS

wﬁomu:m .%Eog infinitesimal generators of rotations about and boosts along
the &t axis by M; and Ni (k= 1, 2, 3). Then the linear combinations

J=3M+iN), K=3yM—inN (1)
satisfy the Lie algebra of two independent angular momenta;:
W Jel = Sewr s, (K, Kil = iewiky, [Ji, Ka] = o. 2)

Since in Eq. ( 1) infinitesimal generators have been multiplied by complex
numbers, the parameters corresponding to them fail to remain real. If the
parameters and infinitesimal generators of a Lie group are denoted by &4
and X4, the required restriction on the parameters can be obtained from the
€o=-~mbo<.§ fact that the bilinear form ¢4X, is invariant under different
Parametrizations of the group as well as different choices of the basis in the
ﬁmocnm,. The restriction obtained in this way is that paramecters correspon-
Q.Em to Ji and K should be complex conjugate to each other. Furthermore
since for UR the infinitesimal generators conjugate to real angles have to dm
hermitian, the condition of unitarity is ) .

Hrm .moH.E of the Lie algebra of the I.G as given by Eq. (2) exhibits the iso-
mor E:.mE vw.nSmoz the proper Lorentz group and the connected part of the
three-dimensional complex rotation group SO(3, C) [13]. In view of this
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isomorphism, it is natural to parametrize the LG by means of complex Euler

angles as follows:
g9 = Cs(p)Ca(9)Cs(y), (4)

where a complex rotation about the kth axis is defined as

Ci(a) = e g = Ke mf:a.ﬁwézsu

i.e. the real and imaginary parts of the complex angle &« = «; + iay describe
a spatial and a hyperbolic rotation about the same axis. ;
For the LG the ranges of the complex Euler angles

p=¢1+lgs, F= +id, p=y1+ip
are given by the inequalities
0<g, pp<2m, 0<Hh <7, —o0<go,da,yr< 0.

For the SL(2, C) group the range of y; should be modified to —2r < y1 < 2m.
It should be noted that parametrization of both the Lorentz and the
LC(2,C) groups by means of complex Euler angles is valid in the group space
almost everywhere, i.e. apart from a set of zero measure.
For two independent Casimir operators of the LG we can choose j% and K2,
The corresponding eigenvalues are conveniently written in the form

P2 +1), Kok 1),

where

J=1%Go—1-+io), k= —j*—1=}—jo— 1+ io). (5)

For the time being this is merely a definition, but it will turn out that as
a consequence of the regularity requirements imposed on the representations,

Jo can take only integer or half-integer values.
Since the LG is treated here as a three-dimensional complex rotation group,

it is natural to reduce irreducible representations according to those of the
complex rotation group about the 3r¢ axis, 0(2, C) = 0(2) x O(1,1). This
requires that the basis introduced be an eigenfunction of the generators Js

and Kj:
J3 |m, m*y = m |m, m*>, Kz|mm*> = m* jm, m*>. (6)
If the eigenvalue m is decomposed according to Eq. (1) into real and ima-
ginary parts

m = Yu + ), m* = Yu — ), (2]



1t is seen that u will take integer (half-integer) values: for the LG(SL(2, C)
group) at the same time » ranges over a continuous spectrum. This basis is
a .ms.mmmremo;ﬁa generalization of the finite-dimensional spinors to the
unitary case: the eigenvalues m and m* correspond to undotted and dotted
indices of spinors. Nevertheless, unlike the case of finite-dimensional spinors,
matrix elements of the infinitesimal generators fail to remain classical functions
but instead become distributions. This is a consequence of non-compactness
of the subgroup O(1,1) generated by the N3. For details we refer to [10].

Having introduced the parametrization and the basis, the task is now to
represent the infinitesimal generators J; and K in terms of complex Euler
angles and afterwards to solve the eigenvalue equation for the operators J2
and K2. As a result of a straigtforward, but somewhat lengthy calculation
we obtain the following eigenvalue equations for the matrix elements of
unitary representations:

1 c* o2 a2 &2 8
. +—_ 9 i R 5
sin? 9\ d¢?  oy2 cosd Op oy * a92 cot of AR
x N«Mmmﬁmzs; Aﬁv 9, Qv =0 (8)
1 (& Lz & P P
* T — M t —— I . 9% - x4 3
sz \ggez * gyre " 07 tprope | | age TN e NI X

X quwwﬂ...ﬁz» Aﬂv %u ..\;v = 0.

For real variables these equations are easily recognizable as differential
equations of the D-functions of the real rotation group.

The general solution of (8) can be written in the form
N«mw.hna...:es* Aﬁu %u ﬁv = e-img+m*g*rnyp+nty*) \mwwwuﬁ*::w« A%q %u.nvw va

where .
R wanr (8, %) = ¢;d*g - codg™ - cad*d -+ cyg*y. (10)

Here d = dJ,, (cos 9) is well known from the theory of real rotation group.
For Re(m 4+ n) > 0 we define these by means of the same formula as usual
for real values of m and #:

. . — — =z i.rv: _ lT z ntn _ o~
«.wa.; nv = 3%:3 2 - o - mNuwAI.w.lTSf.u.lwleSl__lr Swf‘vslmfwm - Awwv
2 2
where z = cos 9 and
) 1 I(j+m+1)I'(j—nt1)
T — s (Re(m + n) > 0).

H?slg‘ir: I(j—m+1) I'(j4-n41)

We shall return later to their definition in the general case.
As the second kind ‘function we introduce
) sin n(j — m)
9= G (z) = —— ———di, (2). (12)
sin 7w(j — n)

If the above d-functions are used as the first kind functions, then the second
kind functions e}, introduced in [14] are inconvenient for our purposes, which
is why in Eq. (11) we introduced g7, proportional to d,. If m and n take
simultaneously integer or half-integer values, ¢ is not linearly independent
from d. In the complex case, however, their Wronskian takes the form:

2 sinw(j — m) 1 1

1 —22 sinw(j—n) I'm—n L CW?.IS&

Wid, g1 = , (Re(m 4+ n) > 0),

ie. d and g are linearly independent, apart from the singular points n — m =
=0, —1, -2, ...,

The constants ¢;, ¢s, ¢3, ¢4 in Eq. (10) should be determined from the requi-
rement of finiteness of the R-function at the singular pointsz = cos @ = 41, 00.
A further requirement is that the matrix elements should approach the unit
matrix as ¢ —> 0, 9 >0, y— 0. In the present case the unit matrix contains
a Dirac delta as well, due to the continuous spectrum of ». This requirement
is not trivial at all, and it forces c3 = 0.

The regularity at z = 1 rules out the term g*g as well ie.cq = 0.

At the infinity we have two dangerous terms, which vanish if

sin w(j* + n* sinmw(j -+ n
ein(m*—n*) - rC - ) ¢ + e—iv(m—n) - » ) ca =0,
sin w(j* 4 m*) sin nt{j + m)
) sin w(j* — n¥) ) sin w(j — n)
ein(m*—n¥*) - - ¢ IT e—in(m-n) - - 3 = 0
sin 7t(j3* + m*) sin t(j — m)

These equations have a non trivial solution if

sin ©(j + m) sin w(j — n) - sin =(j¥ 4 m*) sin 7(j* — n%)

sinm(j — m)sin n(j 4+ n)  sin T(J* — m*) sin w(j* L n¥) ’

(13)

The crucial point is that this is satisfied if Jo defined by Eq. (5) takes integer
or half-integer values along with yu, the eigenvalue of M;. It is obvious that
half-integer values of y and j, are allowed only for the SL(2, C) group.

By choosing an appropriate normalization factor, the R-funetion assumes

the form
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.Nww\wuﬁ.‘,:qu%,u %*v — ; EFaamesess T
41 ﬂ\

sin w(m — n) sin w(m* — p*)

X [@(2)*gh,, (2) — & (2N (2)*] (14)
where

i SIn 7e(j — n) sin (5% — n*)
4 mn == \.! . 5 . A_,mv

SN 7(j — m) sin (j* — m*)

It can be shown in a sim ivi
; ple but not trivial way that a. z=

representations approach the unit matrix, i.e. v ’ o the

::w Nwmuﬁ.ﬁs. (@, 9%) = 8,.8(v — 2),

where

=Hu+ ), n=}x+i2).
For details we refer to [10].
- Up to now the wmﬁwmmmznmaowm Tm.ﬁw been given under the restriction
on +n) = 0, but the generalization for arbitrary values of m and #n is
straightforward enough. The definitions of &, gh and R functi
given by Eqgs. (11), (12) and (14) should be mwgwmoﬁsvw m:_ummmwmﬁm“ o

> M= Hlm o nll + Qi — i), 2> ¥ = J0pm 4 nf) — i — )

i. e. (16)

& >di J i i 7
i &.<.< s Jon > Iuxs Nw.wwwx«u.::* —> \mw%Mﬂf»/Q,* ’
where the symbol [lul] is defined for a complex u as

#w if Reu > 0

el = w sign R n"
g eu —u if Reu < 0.

ierm._ w AW:,E like to mﬁ.@.mm the importance of this point. In the real case, 1. e,
1 bothm and  take integer or half-integer values, the &, and ¢, function
(see Té are usually defined first for m +n20,m—n %so @:@:M@owsm&mm
M% EWFMMN use of the wv:«:ﬁmﬁ,% properties for these functions, their Qmmiaom
exten ed to the remaining values of m and n. However, these symmetr
wz.owm_&w@m fail to hold for complex values of m and . mm,rmnomowo% rmi:%
MMM&@E@Q that the solutions of (11), (12) and (14) are valid WE% mow
u.m»wOm oum Mwy WNw %“ Wmﬁﬂsoiwri > 0 by means of the regularity requirements
’ \, S e m_smﬂ.;m;. points, for the remaining values of m
and n we have to see another pair of solutions which satisfies the regularity
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requirements in this case as well. The result of this procedure is summarized

in the above substitution.
Thus, the final form of UR in the unitary spinor basis is
T
The resemblance to the representations of the rotation group is striking and
is due to the earlier mentioned isomorphism between the proper Lorentz group
and SO(3, C). ;

The hypergeometric function which defines the df,, and ¢/,, function in
Egs. (11) and (12) converges within the circle |sin2 #/2| = j(1 — 2)/2| < 1,
but its analytic continuation is well known. For instance, if the behaviour of
the representations at the infinity is required, it is convenient to use the
second kind functions introduced in [14] for integer (half-integer) values of

m and n as

-, Aﬁw ,%.u @.v — e~ l(m@+m*@*+nyp+n*y*) N&WMRJZ;&« Twu %*v Aﬂﬂv

142 min [] L\ -(m-n) 5 — 1\ -7-n-1

i (2) — A7 2 2 X
N mn A v mn w w w
s 2
XoFuljtm b bn 1,242
with
i ur y . - . -
Ay =5 — o (LGm DI — m+ DG+ n 4 DI — a4 D2,

wn nlv .NJAM.\. IT wv
The same form will be accepted as the definition of the functions for complex
values of m and n, if Re(m 4 #) > 0. In the remaining cases we extend this.
definition by substituting m — M, n-> N, where M and N are related to m
and » again through Eq. (15). We shall need also a function fi,,, which is
defined as .
ux(2) = ey (2).
The analytic continuation of the hypergeometric function .F; relates the
4y and g, functions to those of e}, and fi
2 sinn(j — M)sinn(j -+ N)

diy u(z) = esim(M-N) — . .
T S Mﬂn.w

TWSZANV - m.:.,. f @2 (=)]

i)

. sinw(j + M)sinn(j — M) | L
Gun(z) = M it g lehw(z) — Eny frun(2)],

z—1

2

Im =0



‘where
i sin HQ - N—Nv sin HG _ N(J 112

MN —

sin (j — M) sin n(j + N)

H@Wmnﬁm mzﬁo account ﬂ: uan i i &
; L C e d t. A 1 AM
.\. | @ 1Zzation A 1 va“ ﬂr@ Nw m.ﬂwﬂ@ﬂuoz can U@ @»Awuw.@wmm

Nm&... S .
arage vy (9, 9%) = M@E*.zz* AQE».ANV* :Amv - aSLN .\Ee (2)%),

1
Siasxxe = —— eFR@I-N) sin (4" + M%) X
in?2 sin 2mj*
S 5 1 T . .
w | BB = 4+ N)sin (j* — N*) sin n(j* — Br*) sin oM — 172
sin w(j + M) sin m(M* — N#) ’
z—1
Im =2 0}.
2
Thi I ,
a _Mo WONHMM exhibits the behaviour of the Swgmosgsozm at the infinity cos 9 =
€re remains one more singular point: z = cos § — —1. Again, the

analyti
vmg.u ic Mob?::mﬁo: of the r%wmamgﬁmaﬁo mcboso: provides linear ralations
€en @y x(2), g3/x(z) and .- ~(—2), %EJ,.AI.&

mman..TN,J
sin (M + N)

dyy(z) = EE a(—2) — %< ~(—2)],

Firvlz) = sn x(j + M) sin =) — M)
N\= /f -
S re(j — N) sin n(M - N) :k-ilav o
sin n(j - N)

sin (M + N)

&.FJ,AI,NV.

In terms of these functions the R-function read
sin 7o j* - %)

Nwm.ﬁzf.»u_,i% ’ %*v = MN
4 sin 7n(j — N) sin n(M* L N#)

X

mEaQSx N#)

E@HEA‘NV*%@HRAfNV &t ~(—= mvmwﬁ‘iliﬁu

éroMm N, was given by Eq. (15).

This

o QMVH“M of R-function exhibits the behaviour of the representations
s — 1. The representations obtained form an orthogonal complete

set over the square :;05. e Tun 1 e 2
abl g
, . functions on th Lorentz group. The orthogona-
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324

[ QQNN:QE;:‘:;A v* N«EE. ::»AQV == o . A
g (Z+DE&Z*+ 1

\%

X Buudux8( — ¥)3(A" — 1)8j1,8(0" — 0) (0, 0" > 0)

where dg is the Haar measure on the LG:
i\3
dg = 5 sin 9* sin Jdpde*dddd*dydy*
and
J=HMjo—1+io) m=}u+b), n=3ie+i

J=%Go—1+1i0"), m =3u + 1), n = 306 4 7).

The factor (2j + 1)(2j* + 1) is the Plancherel measure, which is the complex

counterpart to that of the real rotation group.
The condition of completeness can be written as

@K

- /J M M dv | A2 + D(* + DT hnner(d) X
.

urloo H=—0 x=-00
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