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THE VALIDITY OF THE POMERANCHUK THEOREM
AND THE LOW ENERGY DATA FOR THE
FORWARD »N SCATTERING AMPLITUDES!

ROMUALD WIT,* Cracow

A short survey of the present numerical analysis of the validity of the
. Pomeranchuk theorem is given. A sum rule for the inverse amplitude is de-
rived ; it holds only if the Pomeranchuk theorem is wiolated. For the case of the
7N scattering we present a fairly extensive numerical analysis of this
relation using the dipole model input.

L INTRODUCTORY REMARKS, NOTATION, FITS

In this talk we shall deal mainly with some problems related to the validity
of the Pomeranchuk theorem. To be more precise we would like to discuss
here, more quantitatively some of the high energy models which have been
recently suggested [1] in order to explain the new data for oi5, (cf. Ref. [2]).
‘Certain general questions connected with the violation of the Pomeranchuk
theorem have been discussed in Ref. [3] (and references quoted therein). It
‘would be, however, desirable to have also a better numerical analysis of'this
problem. As we shall see later it is a slightly difficult task and the conclusions
obtained till now are rather vague. We therefore derive at the end of this
talk a dispersion formula for the inverse scattering amplitude under the
assumption that the Pomeranchuk theorem is violated and explain why it
has a good chance to be very sensitive to our asymptotical (model dependent)
evaluations.

Let us start with the notation. Since for the case of z*p scattering

‘i. we do not have in the dispersion relations any additional terms related
to the non-physical contributions

1i. the experimental information about ¢,(k) and «=(k) (the ratio of the

1 Talk given at Elementary Particle Physics Seminar at Pezinské Baba, September
2225, 1971. :
** Instytut Fizyki UJ, KRAKOW 16, Reymonta 4, Poland.
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real to the imaginary part) is better known at high energies than for other
reactions
we would like to restrict ourselves only to the 2N scattering.

The elastic forward scattering for the processes 2% 4 p % 4 2 is described
by the amplitudes 7% (w), where o — (k2 + p2)V2 is the energy of the in-
coming pion in the lab. system and 4 stands for the ‘pion mass. We prefer,
however, to work with the even and odd combinations of 7'+ {w)

T1(0) = } [T~(w) + THw)],
Taf) = } [T~(@) — T*(w)]

In order to make our subsequent considerations more clear we concentrate
on three specific asymptotic models: on the Regge pole model, on the model
including poles and cuts, and on the dipole model. All these models lead to
the same general asymptotic form for T1,2(w) S ,

x\2

Tiw) ~ iypk — ype T poar | iyck{lnk — 4 — mW + B, (1a)

9
To(w) ~ —— ¢k (Ink — ¢ — mw 4 iype™ Hrtopte (1b)
7T
differing by fixed values of 4, ¢ and vc. We use here the system of units for
which 2 = ¢ = GeV = 1 and the amplitudes 7' are normalized by the optical
theorem Im T#(w) = koit(k). Let us fix the values of «p and « putting
% = 0.5 and oy = 0.4. What gives us the best x%-value fit for these three
models? Fitting 102 experimental points of ¢, and ot published in Refs.
[2, 4, 5, 6], we have obtained the following most likely sets of values for the
free parameters (Table 1). . :

We see that the dipole model, which embodies in a certain way the violation
of the Pomeranchuk theorem, is strongly competitive. The value of ¢ we get
from this fit leads to o,(c0) — 04{0) ~ 0.75 mb. Now consider only the
difference o,,(k) — ob(k). With 18 experimental points [2, 5] and the para-
metrization . .

Ao(k) = a(k) — aii(k) = 7 + AJpe )

we obtain the following values for the free parameters (Table 2).

We would not like to put too much emphasise on the y2-test. The results
depend in this case very much on the choice of experimental data and change
significantly with higher experimental accuracy. Actually the models we
started the fitting procedure with may also be not quite satisfactory from
some points of view. With the same asymptotic behaviour we may, e.g., not
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Table 1

The values of parameters obtained from the x2-fit to o* and ot

Regge wn;.m model Huow,mmﬂ @M&—Nﬂnm . U_W,iﬂm ﬂw&m_
ye — —185.61 2.71
A —_ — 248 . 4.50%
& _ — 1.02
c — — 2.32
Vo 56.90 75.85 56.49
Yo 62.73 134.54 106.68
Ve 11.81 11.78 6.27
B 13.88 50.31 57.45
z2 222.93 178.23 111.31

* Fixed

take properly into account thé non-leading terms. Nevertheless we see that
we,_cannot flatly reject the possibility of the violation of the Pomeranchuk
theorem. The values of A¢(0) make us to think about. And once the audience
is convinced it is worth to go deeper into this bussines.

II. DISPERSION RELATIONS, SUM RULES

Since we are considering the case where ¢ is not put equal to zero a priory,
we have also introduced a “dipole” term into Ti(w) in order to get finite
values of at at infinity. Our main interest, however, is still concentrated on the
asymptotic behaviour of T5(w) and in what follows we discuss this point more
extensively.

The once subtracted dispersion formula for T2(w) reads (we change now
the normalization to Im T'y(w) = (k/4x) oa(k))

ReTs(w) k2 dk'  oa(w’) ,
g | o o [l — ) =
2w 472 w k% — k2

=1

ReTs(u) 2 k2 [ dE Aok
—f (- oy |2 L B Anl) |
2u H: o o4am? | o k' — k2
ko

(3)

where wp = u2/2M(M = the proton mass), f2 is the coupling constant. The
integral on the rihgt-hand side is introduced for possible model dependent
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Table 2 ' Table 3

Resulits of the best fits to the
differences (k) — ojy(k)

Qualitative results of the analysis done
by Ferrari and Violini

_ Power law “ * Dipole model Ax v 1 Agreement
u | 0.0* 0.57 mb 0 h %0 yes
A 3.95 mb 5.85 mb X0 0 no
é 0.31 0.5* x 0 _ =0 yes
4 22 6.05 671 _

corrections [7]. The left-hand side can be compared with the relevant experi-
mental estimates if we assume something about the asymptotic behaviour
of o3(w) (starting from the value & = ko). If we have good reasons to prefer a
different ansatz we corréct our previous values of Re T(w), integrating over
Aoz(w) = 6% (w) — o2 (). Taking & = 20 GeVje we calculate
the ooE.woSozm due to different choices of our asymptonic models. It appears
that from the threshold up to 15 GeV/c'they are completely negligible. More-
over, these corrections are so small (usually two orders of magnitude smaller
than the experimental errors) that they even do not show up as a summary
effect after some integration (cf. the last section). Therefore we conclude that
the usual dispersion relation is not a very useful tool in analyzing the high
energy models (cf. Refs. [8, 9, 10]).

What about the sum ﬁzmm‘~ m.mﬁ.w? and Violini [11] m:m_uﬁmm the family
of sum rules

N

1
.NE == W<5[+H| SSHE%NAEV ﬁweu m=0,2,.. EB) 20

0

parametrizing oz(w) in the form

ds(w) = Az + Plo*1

The conclusions are shown in Table 3. These results have been confirmed in
an independent way. By chance the authors of Refs. [12] and [13] have ana-
lyzed the same sum rule

y
2f2 n2 k
w ~|Th ?S!n&wv”l.v\.!‘lx_n| Q&LFl
M L= (ua? 2w | (et 4 ptyue

0
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a2(0)

~ o .
#21n = + [(N/u)? 4 112} + o-pole term. (4}

272 u
The values of 202(c0) are

0.4 mb  if the p-pole is included,
0.07 mb without the p-pole term.

Another sort of information is obtained from Dumbrais’ calculations [14].
He evaluated the right-hand side of the aquation

w

* dwkos(w) — 0.017 g2,y = R(W) (5)

1
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pr
for different models and different values of W and compared the results with
the left-hand side input. Table 4 shows an almost obvious ““draw”.

Another work would like to mention here is that by Ellis and Weisz [15]..
They obtained, among other wmmz_em that the value of |g4/gv| (~ 1.17) calcu-
lated from the sum rule

N
1

0= Galgr) = T|§§+%

'S

T2(w)

w2

dow

o

" C

did not depend on any reasonable high energy input.

Resuming the situation we see that, surprisingly enough, we do not have
at the moment any sufficiently precise numerical tool to distinguish-among—
the models which have already been proposed for the high energy scattering

Table 4 .
Dumbrais’ evaluation of the left-hand side and right-hand side of Eq. (5)

Parameters ta- w
ken from the Ao (o)

papers by 10 GeV 20 GeV 30 GeV 60 GeV
Phillips and

Rarita 0.0 25 75 137 451
Barger and

Phillips 0.0 29 79 137 404
Arnowitt and

Rotelli 0.8 23 4 8 74 4+ 24 144 + 47 553 -+ 183
Horn 1.3 + 0.3 — — 120 4 28 561 + 130
LHS 23.8 + 0.1 B4 2 145 4 13 580 - 46
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amplitudes. This stimulates us to look for further constraints on Ta(w) and one
-of them will be discussed in the next section.

III. INVERSE AMPLITUDE DISPERSION RELATION

In this section we present first a short derivation of a sum rule which holds
only if the Pomeranchuk theorem is violated and then we give a more detailed
numerical analysis of it. We start with the two experimental observations.

i. the difference o, (k) — of(k) is non-negative for 1.65 GeVie < k <
< 65 GeV/e

ii. none of the fits presented above leads to a cross-over effect for this differ-
-ence at momenta greater than 65 GeV/c.

Therefore we take for granted

oa(k) > 0, k> ky = 1.65 GeVie.
Now, if 05(00) = const. = 0, then

) k | const
lim ~ =0 (6)
k> | Ta(k) | Inw
and
. k const.
lim Im ~ lim ———— = 0. (7

tro  Tok)  iow (Ink)2

‘Suppose for a moment that T2(w)/w does not have any zero in the complex
2 = k2 plane. Then the asymptotic behaviour of Ts(w) given by (6) and (7)
would allow us to write a dispersion formula for ®/Ts(w) without any subtrac-
‘tion. Note that this statement should putrather severe constraints on the values
-of the parameters describing, e.g., the dipole model. Indeed, the integral

O

=
z (Inz)2

«

.oobﬁ.&ﬁmm but the integral

(dx 1

z Inx
is already divergent. Therefore we can expect that the asymptotic contribu-
tions from our new dispersion integral will be ,
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i. sensitive to the structure of the high energy models taken as the input

ii. essential for the low energy evaluations of /T3 (w). These two qualitative
predictions are confirmed very well by our subsequent numierical analysis.

In order to derive the pronounced sum rule we rewrite the standard disper-
tion formula (3) with one subtraction as (we drop-also the subscript “2’)

B

M\.Asv.fwmewlzw T(u) k2 [ dk'2 ImT(k)

® 2wl —wy m | k% o'(k'2—k?)

0

k2 [dk? ImT(k) -
| k2 o'(k'2—k2)

By

Consider an auxiliary function

z dk'2 ImT (') .
Fe)= —a2+—~| —— a=o* z=1k2 9)
m | kB2 o' (k2 — 2)

Ky
which has the same asymptotic behaviour as 7'(z) and at the “threshold”
F(ky) < 0. This is sufficient to show that F(z) does not have any zeros in the
complex z-plane (o(k) is positive for k& > ky) and to write the following Cauchy
formula for 1/F(z) .

8

_ 1 IW d&’2 Im7'(w') (10
F@) . w | o |FE)E (K2 =z) e

ky

In particular, if we put 2 = 0 we get from (9) and (10)

1 2 [ d¥ Im7(k)
a2 x| ko' |Fk)2

kx
We have evaluated this integral in the natural system of units for three
different values of «2 and three different sets of values for ¢, C and Vo taken
from Refs. {1], [16] and Tab. 1. The medium energy input (from 1.65 GeV/c
to.10 GeV/c) has been taken from the last Karlsruhe tables [17]. Tablé 5 gives
the contributions to the integral in the right-hand side of Eq. (11) from differ-
ent energy regions. ‘
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What kind of conclusions can be drawn from Table 5?

L. If we like to emphasize the medium energy input we should take a rather
small value of «2.-Note, however, that «? cannot be arbitralily small since
F(3) must be negative according to our assumptions. : i

2. For large values of o2 (e.g. for a% = 0.5) the asymptotic contribution
to the integral (11) is extremely important. If for example we neglect the
contribution from the 8t column when o? — 0.5, we get for the ratio of the

right-hand side to the left-hand side the value ~ 0.58 whereas it should
be ~ 1. . .

Table 5

Results of the numerical analysis of Eq. (11)

i ] !
- — g2 | 16510 10—100| 100—10% |jgsss_ o
S ‘ ve _‘ LES (= a2) | "Gvie GeV/e GeV/e Gevje ; RHS
083 {43 |73 | so70 18.43 6.36 37.12 1.56 | 63.47
10.00 0.66 | 0.35 7.76 1.38 | 1015
2.0 0.028 | 0.0159 | 1072 0,89 2.005
102 | 50 | 6.0 60.70 18.43 | 677 38,08 1.28 | 6143
10.0 0.66 | 035 8.02 116 | 10.20
2.0 0.028 | 0.016 113 0.79 2.06
1.02 | 232 | 6.27 60.70 18.33 | 557 34.35 128 | 59.53
10.0 0.66 | 034 7.81 1.16 9.97
M, H 2.0 0.028 | 00162 | 116 0.79 2.00

The value of C' = 2.32 is twice smaller than those coming from other fits.
In fact such a value of C' does not give a smooth transition to the medium
energy values of Re T'»(w) (and it is obvious why: we have not fitted the values
of Re T2(w), which can be read from the experiment, but the values of o).
Therofore if we agree that C' should take a value around 4.5 and the value
of a2 will get smaller (probably) with some more accurate data from higher
energies, we may suggest that the violation of the Pomeranchuk theorem
would contradict (within the model which has been analyzed) Eq. (11). The
values of the right-hand side obtained for different values of «2 and different
sest of parameters have a clear tendency to be greater than the left-hand side.

Our analysis was in fact only a “one point evaluation”. Obviously we can
also look upon the relation (10) in the same manner as we do with the usual
dispersion relations and calculate the left-hand side and the right-hand side
for different values of z. This is, however, a more complicated task and certainly
beyond the scope of the present talk,
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