e e fff['{{!.lzl( S

REALIZATIONS OF THE POINCARE GROUP
ON HOMOGENEOUS SPACES!

WOLFGANG LABNER*, Leipzig

A classification of realizations of the Poincaré group on homogeneous spaces
is given.

L. INTRODUCTION

In describing physical symmetries it is a fundamental problem to find out
the reperesentations of the symmetry group. Even in the case when the group
is already given as a transformation group in physics the knowledge of all
its representations is important to obtain the full physical content of the
Symmetry within a physical theory. Besides the linear representations also
non-linear representations of Lie groups have been frequently considered
during the last years. Since each realization of a group (a linear or a non-linear
Trepresentation) is a union of transitive realizations, it is a fundamental task
to classify all transitive realizations. The problem to find out all nonequi-
valent transitive realizations of g Lie group is equivalent to the problem of
classifying all non-conjugated closed subgroups of this Lie group.

With the subgroup structure of a symmetry group we know also the possible
partial symmetries. .

There is not a-general and parcticable method to classify all Lie subgroups
of a given Lie group. The known methods are related essentially to semisimple
groups or only to special single groups. Therefore we have developed a new
method for the non-semisimple Poincaré group. This method relies essen-
tially on the fact that the Poincaré group is a semidirect product of the homo-
geneous Lorentz group and the 4-dimensional Abelian group of space-time
translations. In such a case the representation defining the semidirect product
is the key to the study of the structure of the group.

The connected Lie subgroups of the semisimple homogeneous Lorentz group
were classified by several authors [1—5].

* Sektion Physik, Wml.gmax.db?mwm?mﬁ 701 LEIPZIG, Wml.zmnx.m:mﬁ. German
Democratic Republik.
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II. REALIZATIONS AND SUBGROUPS

We note some known facts from the theory of homogeneous spaces [6, 7].

1. We speak of a realization of a topological group ¢ on a Hausdorff space
R if to each group element g € ¢ .there corresponds a homoemorphism of g
onto itself : . £

P~>gp peR
with the associativity

S@NE. = {g1g2)p

and with a continuity in g and 2 in the mapping (g, p) - (gp) of R onto R.
ii. We speak of a transitive realization if for any two elements p; and peof B
there exists a group element g with

gp1 = p2.

R is then called a homogeneous space.

iii. Each homogeneous space R is homeomorphic to a coset space G/H
and the realization is then given by the natural action of % on 4/#. On the
other hand each cosed space ¥/5# is a homogeneous space with respect to the
natural action of the group elements ge%on 9|H . A is the group of stability
of an element pg of B and therefore # is closed. )

iv. For #” = go3#g;', go € % the two homogeneous spaces %/#” and G|
are homeomorphic. :

v. Each realization is a union of transitive realizations. .

vi. Now we can say: For olassifying all transitive realizations of a group
we must classify all homogeneous spaces, that means all conjugacy classes of
closed subgroups.

Now it is practically impossible to find out all closed subgroups of the Poin-
caré group including all discrete and disconnected subgroups. This problem
was considered by Niederle and Mickelson [7] for the simple compact

~group SU(2) using a classification by Murnaghan [8], and already for this

group there is no proof of completeness. Therefore we shall restrict ourselves
to the Lie subgroups of the Poincaré group, more exactly to the connected
Lie subgroups. The mean reason for this is the one-to-one correspondence
between the class of connected Lie subgroups of a Lie group & and the class
of subalgebras H of the Lie algebra of @.

This correspondence is induced by the exponential mapping

H = eH
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A weakness in this corresporidence lies in the fact that the m:v&.w@._o.wm does
not decide in general whether the corresponding subgroup will be closed or
not.

HI. THE METHOD OF CLASSIFICATION

Our aim is to get a table of subalgebras of the Poincaré algebra P with
one .and .only one representative subalgebra from: each conjugacy #class ‘of
subalgebras of P with respect.to the proper- Poincaré: group P{. A table of
subalgebras of the Lie algebra of the komogeneous Lorents group with these
properties related to the conjugation with respect to ¥/ were given-by Win-
ternitz and Fri§ [2], see Table 1. We shall give here only the idea of our
method and not each of the steps which are a little involved [9].

i

In analogy to the group elements (I | d) € 2, | e¥,deT,
| (Gl d)e | de) = (Wl | bds + dy)
(d)yt= (1] —12d)

‘Table 1
Subalgebras of the Lorentz Algebra (Fri§ and Winternitz 21
1-dimensional subalgebras

a.C = cos a 4, + sin a B, O<a<m

b.4 =4, + B,

I

2-dimensional subalgebras

a. kA_TNw_
_U. km.n |T .wnw x.»n - wn
c. 4, + B,, —-B,

3-dimensional subalgebras

semisimple, Lie algebra of SO (3)
semisimple, Lie algebra of SO (2, 1)

a. A4,,A4,, 4,

b. By, B,, 4, _

c.4=4,+B,,B=4,— B,,
Cy = cos & 4, + sin a B;,
[A,B] =0 )
[B,Ci] =cosa.Ad —sinx. B
[Ox, Al =cos x. B + sina. A -

O0<a<
This algebra is for « = 0 isomorphic
to the Lie algebra of E (2).

4-dimensional subalgebra

A4,,B,,C=4,4+B,, D=4, B,
(4. B,] = 0,[4,,C} = —D, [B,,0] = —C
[C,D]=0,[A4,,D]=0C,[B,,D]= —D

The Lorentz algebra has no 5-dimensional subalgebra.
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We can write each element of the Poincaré algebra in the form ¢4 [ &
dei,ie T4, which. boints at the semidirect sum

P =L®,7,.

”sA.ITN«

We have then

the homogencous part. o
For a subalgebra H of p We can choose a basis .

Ajey, az ey, CAma [ tne), (0 | gnairy - <0 |

where A1, | . ga, give a basis of a subalgebra Hy of the Lorentz algebrs 7,
Hy is called the homogeneous part of H.

We remark that in general £1, .. 420 cannot be made zero by basis trans-
formation. This comes from the fact that, among the subalgebras Hy of the
semisimple Lorenty algebra, there occur hon-semisimple Iie algebras.

Using the relation

geXg ! = eoxo,

it is clear that conjugated subgroups

H' = g#g,
have conjugated Lie algebras
H' = gHg,
We have ,
Claxa || ar QA | —141-1G o ppy, (2)

This relation can be checked easily in the 5 x 5-matrix representation
&H : N
Lus : |

t1d)e daf, <4ty

S
0000 |1

0000

which gives a faithful representation of the Poincaré group and the Poincaré
algebra. ,
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From equation (2) we see that for H' conjugated to H with respect to 2.
it follows that H, is conjugated to H, with respect to £/ . Therefore the
homogeneous part Ho of H and its basis elements 41, | . » A™ can be thought
of as taken from Table 1. : :

This is the starting point for our method. At first we set up the manifold

{4t &m&vu sy (Amo | o oby>, (3)
with real of, § — 1,2,3,4j=1, .o, N,

This manifold is g manifold of bases of linear subspaces’ of the Poincaré
algebra. But these subspaces are not yet Lie algebras in general. By an alge-
braic completion we get subalgebras of P

<A | Bl>, ..., (Ana | Blat;, thotl, | pn (4)

occurrence of the elements [Ratl | yn,

Now we form the conjugacy classes relative to such elements of #{ which
leave the homogeneous part Ho invariant. For each of the disjoint conjugacy
classes we write down one representative subalgebra,

CAV 9, -y (e |yt o, S tm (3)

where the ranges of the y’s are restrictions of the ranges of the §’s.

After this we add step by step further translation elements to (5) and form
the conjugacy classes relative to 7. Each conjugacy class is then represented
by one subalgebra from it,

IV. RESULTS

Starting from the subalgebras of the Lorents algebra we get by such a con-

3 complete table at the beginning of Table 2). A; denotes an infinitesimal rotation
| around the x;-axis. B; denotes an infinitesimal pure Lorentg transformation
in the (z;, %4)-plane. The infinitesimal null rotation or so-called E.sm&ﬁ. Lorentz
transformations are denoted by 4, B, C, D without indices, A1 |4 & gives
an infinitesimal screw that means an infinitesimal rotation coupled with an
infinitesimal translation. Figures 1 — 3 show lattices of subalgebras with elements
of this type. A3 - Ay means that the algebra A; or g conjugated algebra is
a subalgebra of A, . .

By the one-to-one correspondence of subalgebras and connected subgroups,
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Table 2

m:cm_mo_ﬁ.mm of P

Different, parameters and different, signs denote differe
CAlty = 4 + 6Ty = ﬁmm.@_mog.m of the translation group

One-dimensional subalgebras of P:

g A1 + By
Citiy 0<izicw | KA+ Baj 5y
Ak&-N_?v CAN-,A [e o} Am~+.wu_«nl|«uv
<di|+ {ta + 1)y :

By 3

Brihty  0<i <o t
t+t

o OAkAﬁ.,R#H. 4+ 4

2 -
Subalgebras of p (arranged relatively to their homogeneous part):

Ia) 4, (Al o (ta 4 1)

Ar, 4 . Ay | 21D, 4y

Ay, 4 . (A4 | Atad, 4y

A ts gy ) {Arf + (g + W), by — gy
Ai, te, 4 . , {4y A, t2, &3

da, ta, by . . <4, | Zata), 85, 13

A b, 6, 4 , _ Ay | & (b + 0)5, 1, 4,
Aq, ta, 8, ts <Ay | 21>, ta, %, ts

i b+ 1y, 4, 4 {Ai| hats), 81, ¢, t3
A.&LuNu.» ) AxA—_HWQ»JTu;v. N»f:uuwu i3
<Ar | Atr> : ‘ With: 0 < Al < oo

<di | Auta) O<ii< o

Ib) B, : v o ; By, Ty
- By, ts © KBy | Atp>

.wuu? +A~ R B : Amu_nn.vqua .

B, t, ¢ Bl M), g - A

By, 1, 13 ’ R X 142>, 1, 1,

Bty t,ty - A <Bi| i), ¢, +th,t
By, e+ 11, by, ty : ’ Amwl\ﬁmvunfrq.nw
wr?.nn.am Smo_ﬁoA&.A.oo

" Ie) Qn”>-mmﬂn«+hw~acmﬁ - QS?:T«T«N, f
i Cay ta, tg o Cu, Ty
Ca, ta, 13 . 5
Ca, tg 4 ¢, S—_EUOARAH,Q#M
198

¥d) 4 = 4, + B,

A, 4

A, tg + s

At + 3, b

A, ty + &, 4

Ayt + &3, tisin o + t2 cos o

™

With: 0 < ¢ < , R#M

Ay ta+ta, b0, 15

Ayta 413,80 — 45, 1,

Ia) 4,, B,
A1, Bi,ty + 4,

A, B, t, + i3

4, B, b1, 84 + 3

A4, B, U, ta, 8 -+t

A, B, T,

ANy, (Bt + Bad, t4 + 13

With: — o0 < 4, 8 < o, A % —f8

A, (B u — IS
With: — o0 < 1 « oo

{4 |eosa.t;>, (B | sina . £33, 15 4 ¢4

HHGV A4 = »AL -+ wmq Iuqu
A, —Bs,
A, —~Bg, ts + ¢t
.»h& ln.wuq nmu ? JT «u
A, —Bs3, 4,8 + t3

4, —B3, ¢ty sin B + & cos Bty + ts

T
SmﬁchmAﬁ.m#.wl

A, —Bs, ti, ta, ty + 13
A, —Bs, to, tg + t3, 1, — t3
A, —B;, T,

Ia) 4y, Az, A4,

By, Bz, A3, t3

A, T,

Aty — 135

CA |ty — t55, 4

Am _«» —_— muvu ty — «w

<Aty — i3>, sing 4 ¢, cosf3, ¢, -+ ty
{aye, — )y, 0+ £

{A{ts — 13>, 8, ta, lg 4 &3
<Al + 4>

Al L 4d, 6Lty

Al ud, ta,ty L gy

Al L ad to, bty + 14, 8, — t3

A1, By, tg, 1
A1, Bi,ta, ta, by + 4,

A1, By, ts, 4y A, By, T,
H—.—uv;&”uﬁnn*lmwm,mw”khu.l.w- . T 5m 3~

With: — < 4 € —,a F
4 4 4

A4, (B ~t)

A1245, KB | (ta — t3)), ta, 1, + t3
$~E:ISA\.A+8

(A4 | 44>, (Blh — 2D, 1y + 23
With: — o0 < 7 « + o

{AT8>, KB | —t55, t, + 2

A, B [t — t3), 1y, ta, ta 4¢3

4,<B| + 3, b, ts 4+ ty

A4, {—Bs | pit;>
With: 0 < 8, < o

A4, {—Bs| gt + Pate). ty + 1y
smg:OAmwA o, 0 < _\wm_ < ™
9&%~”O~OA§~A8

A, {—B; | A (sinec.t, — €osx.l3))>,
COSx.fy 4 sing 2o,y 4+ 13
eSﬁ:oM&Aﬂ,oA\..AS

4, {—By | Bitid, ty + g

With: 0 < g < o
A, {—Bs | pits>, ta. 1, + 3.t — t3
With: 0 < b < o

Ay, As, A3, 41, 5, 13

g Ay, Az, A3, 1, Ai, Az, 43, T,
IIb) B, B,, A4, By, B2, A3, tr, ta, 1,

B, B, A3, T,

*In diference to my preprint TUL 33 (1970) this conjugacy class has vmm: corrected by
a hint from H. Bacry, P. Combe and P. Sorba (C.N. R. S., Marseille Oct, 72).
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IHe) 4 = 4, + B2, B = 4, _ B,

Cy = cosa.. 45 4 sina . B,
With: o S a< g

A, B, Chy, ty -+ ¢ty

A, m“ wwu 1, ¢y + i3

A, B, Co, 11, 15, 4, + &

4, B, ¢, T,

4| —-u3, (B -, As, tg + ¢y .
A4, B, Ay | + (ta + t3)>
4, B, <By | A, tq 2y
With: 0 < 3 <7 o
4, B, {Bs | >, ta, 1y 4¢3
With: 0 < 3 < o
4, B (A3 | 4 jt, — B0y b, b, by o gy

Aiad, B, As, b + ¢
—
V) 4,, By, 0 = As + By, p — 4 — B,

41, B1,0, D, 4, —

A1, B1,C, D, ¢y — b, ta, t3

4:, B;, C, D, T,
///

2]
I
ty 4 oty

l1.4 (time-like plane)
ta+t3, ¢, (null-plane)

Translations

t, b2, ty
i, b, b

e+ 3,4, 8
.

r,

Table 2 js also 5 table of aJ] conjugacy classes of connected subgroups of the

Poincars group.

Theorem: Eqcp, Connected Lie subgroup of the Poincaré group is closed.
We shall not give the proof here, see [ 10]. But we shallilly strate the case of
a non-closed subgroup by known example. The 2-dimensional torus surface
thought of aga, group of translations on itself is given by the group S0(2) x S0(2).

4.<8
ntQ

\ S

A8, ¢, vty <ANAL>, <pr, SALS, by o8 £so

<AIAL >, <H1 LB by vty

A4, <81, =30, Lr.t5,t, I3

.unwv\mﬁnﬁmw.w /

SAIAL ), <81 L ~t350,85,8, *ly
T T B 2y
N/I
-
<

SAI<B -to5,0, 16,

<Al cos K-ty 248 sin &Lp b ety

Af-8 RS TS
e pen sy ag

8 <Al At

AB 12,<81¢t,-Ap,>
DAL AATART RS

Fig. 1
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_Tt ¢

SAIL 3, <81-£55
NGl A7

- Lattice of subalgebras.

A -85.7,

e T

ASEN Lt otp tyrtntots  A-85trt5,t, 2y A~lrlatertsty-ts

A O Afsina-ty-cos a-ts)5 cos -ty + sinn ‘2, A, =05, 005 Rty #sin w-tp,ty oty

OLALOo, oLar Tty orarL i
2 A, -Bs,t;, by +t5

A B3 ittty vty

/ F o

AEB Bl buets  A<B51 Bt by by ot AOnly Al tyety
0L fiLe,0L (] Lo
Bh = Q.QA\&NAU

A<-851 8, ¢,> A, -85

Fig. 2. Lattice of subalgebras.

A8 Cu, i1, 8,8, 025

A8 <Asl 2ty -1y, Y. t2.tu+1
— T 20
&
/ %
A
m/

AB.85,8,tuxts AB By VAL, ty,8, 525
T/ H 0L AL
2

SAVZ 60, <B1 585, 45,8, 25 A8, Cn, by ety AL, <B51 Atys, 2, 024

K=0

(g=27) 0L Al
—_ —_— YiAlem
~ss
A4.8,Cy A8, <Azl (ty +t5)s

Fig. 3. Lattice of subalgebras.

The 1-dimensional subgroup of translations with an irrational slope is then
an infinite screw line which Is wound around the torus and which comes never
back to the origin. This line is dense in the torus. The closure of this 1-dimensio-
nal subgroup is the 2-dimensional torus.

x SU(2) has a 1-dimensional subgroup described above.

Since the coset space /s for a closed sugroup S is a Hausdorff space-
([11] p. 243) using our theorem we can say: Table 2 is also g table of transitive
realizations of the Poincaré group on Hausdorff spaces.
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