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SEVERAL KINETIC COEFFICIENTS AND THE RELATIONS
BETWEEN THEM FOR ONE TYPE OF THE CHARGE
- CARRIER

BERNARD KONIG*, Bratislava

The results obtained in the present paper give for the kinetic coefficients
expressions which are for a given type of scattering dependent on the che-
mical potential and temperature. This was possible by utilising the Lorentz
solution of Boltzman’s kinetic equation [2] introducing the free mean path
in the form I = 7o(T)e* [3] and using the Fermi integrals. The analogical
expressions known from the existi g literature [4—8)] are not suitable for
further calculation.

I. THE BASIC RELATIONS

We use the results of the paper [1] giving for n-type circuit carriers the
following relations for:

a. The density of the conventional electric current
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b. The thermoelectric voltage in a closed semi-conductive circuit
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¢) The heat released in an element of an nonhomogeneous semiconductor of
the length dz and the unit section during the unit time in the Ppresence of
& temperature gradient
1 d1l1fr+2 pF * i d
dgy = —p - 1 + kT r1(p*) . J J:
e dzT\r41 Fo(u*)

where F(u*) is the Fermi integral, u is the chemical Potential, u* = u/kT"
the free mean path is expressed by the relation { = L(T)er, where ¢ is the
energy of the electron relative to the bottom of the conduction band. The

symbol g, is defined by the relation (2). The same relations for a p-type of .

carriers are analogical.

IL THE EXPRESSIONS FOR THE COEFFICIENT OF DIFFUSIO N
AND THE RELATION BETWEEN THE MOBILITY AND THE FREE
MEAN PATH OF THE ELECTRON

In a inhomogenous sample the current of diffusion due to oulox #0 atb
dT/dz = 0 is in equilibrium with that due to the electric field. Its value
follows from the relation (1)

and hence
To(TYETyr+12 [ 8\1/2 Fr(u*)
p o DALy (8\im ) ®
3 m F_yj2(u*)
du 1 no
For dT/d» = 0 and j = 0 we obtain from Eq. (1) B = M&.llm . - Considering
Egs. (5) and (6) we may write for the density of the current carriers
du w 2T Fip(p*) dn dn
jo=Bum = ——F—po 2=,V e
dz e e Nﬁlukﬁt v dx dz

where w is the mobility of electrons.
Hence

26T Fyp(p*) w d
w W) v du (10)
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Comparing Eqgs. (8) and (10) we obtain the relation between the mobility and
the free mean path of the electron

J 16mem* du 1
Jja = - 33,3 W(T)r + :SS&t??JM&zU (4) — el 2 vE Q&qvl\wﬁ L1 Fo(u*) -
Neglecting the term v2g in the distribution function F=1Jfo— vyg [1] we may 3 3* £ Fipa(p*)

write in the first approximation
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Putting dy/dx = (dp/dn)(dn/dx) corresponding 7' = const, in the Eq. (4), we .
have .
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From Eq. (10) the known expressions for the diffusion constant in the case
of nondegenerate gas, when Fy(x) = I'(r + 1) exp (x), and for the degenerate
gas, when Fy(z) =— «r+/(r + 1), follow. With respect to the above mentioned
fact we may write Dponaey. = kT'Je, which is the known Nernst-Townsend-
-Einstein relation. Analogically

2u

Dgeg. = — w.
deg 3e

By putting in this relation the corresponding expression for u from Eq. (5)
one obtains P

1 w k2 [3n\23
Daeg. = ———[—| -
T em* ¢ \ =

Substituting ¢ into Eq. (11) by the mean value of the energy &, obtained under
the same assumptions as in the case of deriving Eq. (5), i. e.
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we obtain an expression for the mobility of the electron with a mean value of
energy

la w% @E?él . \
MT +:s* .
=i A i%v (r + DF(u*) Fonl®)y (11a)

H«p the degenerate case this expression becomes

e 2 172 (5\r
W= NM EIl*t*w% Mv (11b)
and with regard to u obtained from Eq. (5)
_ e m \1B(5\r
S”NMMAMSI 'W . (11e)
In the nondegenerate case Eq. (11a) becomes
W= Tal (m*ETY 2 (r -4 2) i *'fwlu. (11d)
3 3 _\H

An advantage of the Eqgs. (1 le) and (11d) is that they contain besides the
mean free path only the concentration of electrons or the effective mass. That
fact enables an easy estimation of the mobility in any of the two above men-
tioned cases. ‘

From Eq. (11) the particular expressions for the mobility for the different
kinds of scattering in the nondegenerate and degenerate cases follow:

For r = 0 (atomic lattice)

a. in the nondeg. case w = el )
3(2rm* kT )12
. 95 1/3
b. in the deg. case w = ley2 [T .
h 3m
For r = 1 (ionic lattice at T Debye $Ew9.m¢.§ov
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For r = } (ionic lattice at T' < Debye temperature)
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The derived expressions are either in accordance with those mentioned in the
literature [9] or the results following from these derived expressions agree
with the results obtained in other ways [10].

b. the same as under a.

HI. THE EXPRESSIONS FOR THE THERMOELECTRIC COEFFICLENTS
AND THE RELATIONS BETWEEN THEM

From the modification of wn (2), 1. e.
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In the general case u = u(z, T) and T = T(x). If r = const. along the sample
we may write

d du o 4T o

ou oudT\ & dT @
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From Eq. (3) with regard to Eq. (13) it follows for the Peltier heat in the case
of grad7 =0

J, o @ (Ba ;
dgjp = =T ——|[—| dz = mjdz, 14
B = e e au\T " (14)
hence
T ou & [Ba) 1 d
= [ == ()
e Ox ou\T e dz

The Peltier heat, released in an arbitrary section 1—2 which can be composed
from different nonhomogenous parts, can be written as
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Eq. (16) determines the Peltior heat in a general case contrary to the a&mnﬁw ‘

literature in which only the Peltier heat is considered released upon the

contact of different materials or volume and contact contributions are consi- -
dered separately. Eq. (16) expresses the relations between the introduced

quantities

I = Ta(16a), 5 - SCF1-2)
do

Analogically from Eq. (3) with respect to Eq. (13) the expression for the-

Thomson heat in the case when Ou/0x = 0 and dT/dz 5 0, can be written

j _dT fou & 2 a7
dgp=>qp—(2 24 )P}y 9T (17)
e dx\oT ou orT/\T dx
hence
_Z{e o, o)(m) T ap
e\oT ou  oar\7) ¢ ar\7 | (18)
From Eqs. (12) and (18) one obtains
T'a Ts
1 d
T2 — opy = | —— mw d7 = le.lmmu (19)
edT \ T T
23 7
wherefrom in the limiting case when Ty - Ty it follows that
da T
d7 T .
Eq. (16¢) becomes in the limiting case with regard to Eq. (16b)
da = )
dz2 T 1)

_@.H.oﬁ the foregoing it is evident that the whole Peltier heat released in a closed
circwit equals zero. The same is valid also for the Thomson heat. In both cases
the corresponding integrands are total differentials. For a further modification

178

(16b), ms = P(ay — o). (16c)

of the expressions which contain the derivatives of Bn introduced in H@ (2)
it is possible to use the relation
q :

= Fp(x) = rFr(z) forr > 0.
dx

By comparing Eq. (2) and Eq. (8) for a closed circuit it follows that the whole
heat released in a unit time is equal to the product of the current and the
thermoelectric voltage, which expresses the first law of thermodynamics for
this case. From Eq. (3) it follows that :

dgs
S o 2

this is the expression for the second law of thermodynamics. Thus the obtained
results satisfy the first and second laws of thermodynamics identically-
which follows from the quantum-mechanical method of their derivations. The
derivation of the relations between the thermoelectric coefficients is only
a formal modification without the application of further laws. The correspond-
ing relations in the phenomenological theory are derived [9], [11] by means
of the first and second laws of thermodynamices. :

IV. CONCLUSION

Using the Lorentz solution of Boltzman’s kinetic equation several kinetic
coefficients and relations between them for different kinds of scattering —
not mentioned so far in the existing literature — are obtained. They do not
contain symbols for complicated integrals which would not be applicable for
the calculations, but they contain only Fermi integrals Fy(u*), which depend
only on the mechanism of the scattering (which is represented by the value
of 7), the chemical potential and the temperature, respectively.
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