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THE EFFECTIVE RHO-OMEGA INTERFERENCE AND PION
FORMFACTOR .

MIKULAS BLAZEK*, JURAJ BOHAGIK*, Bratislava

The most recent Orsay data on the elmg. pion formfactor are explained
by the interference of the rho and omega, both objects considered with an
effective mass and widsh. Leaving the rho mass and width as free parameters,
the best fit procedure gives m, = 775.6 MoV and I, = 126.8 MeV.

I. INTRODUCTION

It has been shown lately [1] that the recent data on the isovector elmg pion
formfactor are satisfactorily explained by the o — w interforence if g is descri-
bed by the Gounaris-Sakurai form, [2], which involves a quadratic term in
energy squared in its denominator.

There is still an open question how to relate the experimental mass and width
of a resonance, directly observed, with the location of a simple pole in the
complex energy plane. However, expanding the denominator of a resonant
formula at the resonance position and neglecting the quadratic and higher
terms, it is possible to introduce the effective mass and the effective width
of a resonance. It is shown in the present contribution that the formulae
derived in that way lead also to a satisfactory explanation of the aforementio-
ned recent data. Moreover, the introduction of the effective parameters of
the resonance might explain the shifts in masses and widths observed in
different collisions. Furthermore, by means of those parameters it is possible
to understand also the difficulties encountered when a sharper value is to
be ascribed to the mass and width of the low-energy two-pion system with
I¢JP = 0+0+, [3]. ‘

II. EFFECTIVE PARAMETERS

Let us describe a resonant object with the angular momentum I by a Breit-
-Wigner amplitude of the form
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mg/[mg — s — imoI'(s)], (1)
where
q1s92s ) els)
(915925)o e(mg) ’

mg and I'g are the (constant, ‘“‘unperturbed’’) mass and width of the resonance.
The expression (1) is chosen quite conventionally in the s-channel, m; 4 mg —
- mg + my4. The ¢. m. s. momenta g1, and g, give q15055 = h(s)[4s, where

h(s) = [(s% — 6T + x)2 — 4s(As + »)Ju2

I'(s) =Ty (2)

and
I = mi + m§ + mE + mZ, x = (m? — md)(m: — m3),
= (m} — m)(mg — m5), v = (mim} — mIm)(m? — mi — mZ — m2).

In rel. (2), o(s) is usually adjusted to give the best description at the resonance
(compare, e. g. ref. [4]).
On the other hand, a resonance is often described by a simple pole
Jmd) = mifconst. [m?, — s — imgly]. 3)

To be able to relate both denominators in rels. (1) and (3), the energy dependent
width (2) is expanded in series at the resonance position, s — mg. Neglecting
the terms (s — mg)N with N > 2, exactly the form (3) is obtained, where

mly — ity Iy = m — imolof(1 + imoToV) (4)

and the factor “const” in (3) is uniquely determined. In rel. (4), V = 32 +
+ 1A —m)+B and 4 =Km)h(m3), B=g(mdo(md): tho prime
denotes the first derivative. If the external particles are stable, the following
expressions result .

Moy = mo[l -+ VIB(1 + mT 2V, (5a)
Top = To[1/(1 + mZTEV2))(mofmey). (5b)

The paramecter B is influenced only by the g(s)-function. From a great ﬁz.m.ae%
of different forms let us choose the following one (it is a slight adaptation of
that given by eq. (7) in ref. [5]),

08) = LS (quagea BT, 6)
=0

where R determines the range of the interaction (in our computations we
have fixed R at about 2 fm for g as well as for w). In this case
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B = —[1 + 2mEW)2m?,

where

W = O(md — S0y S0

§-0 =0
and

C = R%h(md)[4mE = (q15q25)0 2.

HI. RESULTS AND CONCLUSIONS

The amplitude for the pion formfactor is chosen in the form-
Fr = f(m) - cetof(m?), : - (7

where f(m) is given by rel. (3). In rel. (7), ¢ = 822 BB, (I'y/mo)/f¥? and
Ba = (1 — 4m?(s)i2, [1]. In rel. (6) we set n = 1. As input we fixed m, at
783 MeV, I';, at 11.9 MeV and By = 0.2, B, = 9 X 10-3; the numerical values
of the branching ratios B, = B}l%,and B, = BY2__ are taken from ref.
[1]. Minimizing with respect to the first ten experimental points!, the best

fit [6] gives for our free (“unperturbed’’) parameters?,
mp = 775.6 MeV, I}, — 126.8 MoV and ¢ ~ 1190, (8)

Those values are influenced only very slowly by the variation of the input
Parameters in the range of several MeV. The effective parameters of My, Iy
and I are nearly the same as those , unperturbed” values (for instance,
(ma)er = 783.978 MeV), however, (me)er = 768 MeV. Our best fit is seen in
Figs. 1a and 1b, with a confidence level of about 78 %, (42 ~ 3.1)

Nearly the same fit is obtained with the dependence g(s) as given by rel. (6),
using rels. (1) and (2) directly: now the confidence level is about 81 % (2~
~ 2.96) and the output values for myg, I'g and ¢ are nearly the same as in rel. (8).

Because the y2-criterion cannot significantly distinguish between those two
approaches we have used also the “z-test”, ref. [7]: here a criterion is sug-
gested which allows to choose one of the two alternative hypotheses and also
a method of linearization of the non-linear problems is described. However,

1 The minimization with respect to the first nine experimental points from Fig. 1a
brings essentially no difference.

2 The external error correlation matrix in the subroutine MIGRAD using parabolic
approx imation gives the following values for errors: Ame = 3.8 MeV, AT, = 2.3 MeV
and 4@ ~ 0.1°,
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in our case, the v-test gave no sign in favour of any of the two methods men-
tioned above.

The method of the effective parameters is convenient also in the dispersion
relation techniques: in the effective pole term also the shape of the resonance
as the singularity on the unphysical sheet can be taken into account;
without that notion the evaluation of the crossed channel contributions en-
counters many complications, namely when the inelastic processes are con-
sidered.

The authors acknowledge the correspondence with Dr. J. Lefrangois
and the discussions with Dr. A. P4zman.
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Fig. 1a. The pion formfactor vs energy, until Vs ~ 1 GeV. [a] Lefrancois J., in Ref. [f1,

p- 562. [b] Balakin V. E,, et al., Phys. Letts. 34 B (1971), 328. [e] Sidorov V. A., in

Ref. [f], p. 66. [d] Borelli V. A., et al., (BOF group); quoted by Bernardini C., in

Ref. [f], p. 38. [e] Barbiellini G. et al., {muon-pion group); quoted by Bernardini C.,

in Ref. {f], p. 38. [f] Proc. 1971 Internat. Symp. on Electron and Photon Interactions

at High Energies, Cornell Univ., Tthaca, N. Y. 1971 (Ed. by Mistry N. B). [g] Baier
V. N, Fadin V. 8., Pisma v JETP (Letts.) 15 (1972), 219.
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Fig. 1b. The pion formfactor vs energy, for _\MV 1 GeV (the notation is the same as in
Fig. 1a).
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