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THE GROUP THEORETICAL STRUCTURE OF HADRON
MASS SPECTRA IN SU2) ® SU(2) DYNAMICS

MILAN NOGA*, PETER NAGY*, Bratislava

The Weinberg algebraic realization of the chiral SU

(2) ® SU 2)symmetry

is considered for the cage when only s-wave and P-waves pions are taken into
account. Making use of the generally accepted assumption of the absence of
exotic states it is proved that the mass spectrum operator of hadrons behaves
a8 & sum of scalar and g component of a 35-dimensional totally antisymmetric

third rank tensor of the group 80(7).

L INTRODUCTION

Recently Weinberg [1] has derived extremely p

owerful and elegant alge-

braic relations involving the Pion-hadron decay amplitudes and hadron masses,

These have following form:
[Xo, X8] — jesr]y
and

[X?, [m?, X6]] = —m28as,

where «, f = 1, 2, 3 are isospin indices of the pion. The meaning of the various -

1)

(2)

symbols in the previous two equations is as follows, (X®)ps is & matrix element;

parity, etc. It is related to the invariant Feynman amplitude M, (p', ¢: p) for

any helicity conserving transition Process

AP, 2) = b(p’, ) + nx(q),
of the massless pion z* by

@)

3P’ @ p) = 2F7 (m2 — M) (X®)pq, 4

where a(p, 1) and b(p’, ') denote hardons with momenta p and ', helicities

* Katedra teoretickej fyziky Prirodovedecke;j fakulty
Miynsks dolina.
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Aand 1', and masses Mg and my, respectively. I« ig the isospin generator matrix,
m? is the diagonal mass-squared matrix, m? is an isoscalar, and F5 is the pion
decay amplitude approximately equal to 190 MeV. The matrices Xo are
diagonal in helicities, i. e.

(Xorar = 812:(X ). (5)

The essential assumptions used by Weinberg in his derivation of the afore-
mentioned relations were:

a. Three-graph contributions to the forward scattering amplitude of mass-
less pions by hadrons calculated within the framework of the chirally invariant
Lagrangians must not violate the asymptotic behaviour of the actua] amplitude
given by the Regge pole theory. .

b. There should be no so-called exotic states having an isospin 7 — 2, .

The algebraio relations (1) along with the standard relations involving the
isospin generator matrices 1= of the isospin group SU(2); define the Lie algebra
of the chiral group SU(2) ® SU(2), and this implies that hadron states must,
for each helicity and various spins and isospins, form a basis for the unitary
(reducible or irreducible) representation of the chiral group. The commutator
(1) then determines the transition amplitudes among hadrons accomodated
in the single unitary representation of the group in question. Once the matrices
X are known they can be inserted in the second commutator in order to
find the form of the mass spectrum of hadrons under consideration.

One sees that the method demonstrated by Weinberg posseses a great
amount of physical appeal since it gives a scheme for calculating the pion
hadron transition aplitudes and hadron mass spectra, which is, in some sense,
the part of the aim of strong interaction physics.

This treatment has been extended to the SU(3) group by Ogievetsky"
[2], to multipion production. processes by Mc¢ Donald [3], and also to the
higher chiral SU(3) ® SU(3) group by Ram Mohsan [4]. .

Unfortunately, relations (1) and (2) do not provide any information on how
hadrons with different helicities are related to each other. As pointed out
by Weinberg [1], the helicity and therefore spin dependence of the matrices
X@ can be determined if one assumes that only a fow partial waves predomi-
nate in the pion hadron transition processes (3). .

In particular, transition between states of nearly the same mass and the
same parity involve only p-wave pions, as, for example, in the decays A — N: 7,
Y{ > An, Y} > Sn, B > 5n eto. Just as a starting point assume that all
pion decay processes involve only p-wave pions. This implies that the matrix
X transforms as a third component of a three-vector D%, o that

X = Dg (6)
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since X* must be diagonal in the helicities. Assuming that all commutators

ontering the theory do not contain any terms carrying the isospin I = 2, one

can show that the matrices of the isospin I%, the angular momentum J,
and thepion-hadron coupling matrices D% may form the closed Lie algebra,
of the group SU(4) [1], namely,

[I%, 18] == igabv]v, (7a)
[Ji, J5] = ieiad, (7b)
Vi, I1] = 0, (7c)
(%, DE] — icasrDy, (7d)
_”,NT .Uﬁ = m@&&bﬂ. - A.NGV
and
[D;, D} = i8yec6vI7 1 i§08g; Ty, (7£)

Srmu.@ %, .“m k=1, 2, 3 are angular momentum E&oomp These commutation
relations imply that the hadron states must for various isospins and spins
be accomodated in an unitary (reducible or irreducible) representation of the
SU(4) group.

; In this approximation the second Weinberg algebraic relation (2) has the
orm

(D5, [m?, D]} = —mides. (8)

ON.So the group structure of the pion hadron coupling matrices D? is known,
one is able to show that the mass matrix m? is given as the sum

§m — Sw + SM. A©v

where M§m behaves under commutation with D7, Jy and I as an SU(4) scalar
and m; transforms as a member of a 20-dimensional representation of the

SU(4) group. This representation is characterized by two rows and two columns -

in the Young diagram. The applications of Weinberg’s algebraic relations when

only Pp-waves pions were taken into account have been intensively discussed
in the works of ref. [5].

Ho.wwoomom further suppose one wishes to have a more realistic situation
allowing an s-wave and a p-wave pion transition, one writes then
X* = sin ©S* + cos OD%, . . (10)

.Srﬁ.m S js an isovector three-scalar matrix representating the S-wave pion
:%9.@35: and @ denotes a mixing angle between an s-wave and a p-wave
Pion in decay products. Weinberg has shown [1] also that the matrices 8%
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along with the matrices D?, I, J; and with three additional matrices Kj
from the closed Lie algebra of the group SO(7), namely, .

[Sa, 88] = igx8vIv, (11a)
[T, 6] = iexBySy, (11b)
[S2, D8] = i8*6K, C.Hov
[8% K] = —iDg, (11d)
[Dg, K;] = i848, (11e)
[Ji, Kj) = oKy, (11f)
[K;, Kj] = ey Ky (11g)

The last set of commutation relations along with the commutators of the Lie
algebra of the SU(4) group given by Egs. (7) are in fact the Lie algebra of
the group SO(7).

- However, the tensorial character of the mass matrix m2 within the SO(7)

group has not been derived yet. The purpose of the present paper is to fili

this gap and to show that the mass squared matrix has also simple group
properties, namely, that it behaves as the sum of a scalar and a component
of a 35 dimensional totally antisymmetric tensor under the SO(7) group
transformations.

II. S0(7) PROPERTIES OF THE MASS MATRIX

- ‘As mentioned above it is possible to prove that the mass matrix behaves
as the sum of two parts which transforms as a scalar and as a component of
the 35 dimensional totally antisymmetric irreducible tensor under the S0(7)
group trnaformations. The known tensorial character of the mass matrix
provides the straightforward method for writing down the mass spectrum of
hadrons as a sum of the Clebsch-Gordan coefficients of the group S0(7). To
do this use is made of the two following definitions

[82, m?] = im~ : (12)
and
(D%, m?] = ims, a3

ér_moF when the relation (10) is taken into account, are inserted in Eq. (2).
This yields
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1sin? O[S, m?] + i sin 6 cos O{[S%, m#] + [D, m]} + i cos? OLDS, mb] —
= m2as, (14)

The 3-scalar and 3-vector parts of this equation must be separately valid,
thus

[82, mF] = —im2808, (15)
Tmiu .5%.._ = - _”.UM» §hu. Aﬂav

In the derivation of Egs. (15) and (16) we have used Eq. (8).
Next we consider the Jacobij identity for 8=, D¢, and m?, which gives

(8% mf] + 8%0[m?, K] — [DF, mo] = 0. (17)
One can prove using the Jacobi identity for §«, D? and
Hy = igrdoey, (DY, mp],
that the commutator

[m?, K] = 0, . (18a)
which gives rise to the following equation .
(S, mf] = [Df, ma]. (18b)

In order to proceed further we have found it very convenient to define
an antisymmetric tensor J u» and an isovector and four vectors Nn in a four
dimensional space u, v = 1, 2,3,4as

Ja = —eqple, 6,j=1,2,3 (19a)
Ju = Ky, (19b)
X; = D | (190)
and ,
Xi=8, - (19d)

where the convention has been used that the superscripts like «, 8, y label
isospin indices, while subsripts like u, », g, ¢ are connected with an abstract
four dimensional space. These definitions allow us to rewrite the sets of
commutators (7) and (11) in a compact form as

[1*, 18] = igwbv]y, (20a)

_H«N,Eu» .NEL = m@e@.\% - wua,NE == wi&. xT Mt%\wmv. AMO,UV
[1%, J ] = 0, (20c¢)
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(1%, X8] = iexvX?, : (20d)
[Jurs XG] = i(8se X — 840 X7), (20e)

and
[X5, XE] = iSpecpvIv — 13087 . (20f)

Now consider Eq. ( _wm_v.&obm with the fact that the mass matrix m2 conserves
spins and the isospin, hence

[m?, I*] = [m?, J ] = 0. (21)

This property of the mass matrix is used in the Jacobi identity for X%, X%
and m?2 to get the relation

(X5, [X7, m2]] = [X§ [X2, m2]). (22)
This implies that the 144 matrices
B¥ = [X= [X?, m?]), (23)

are symmetric with respect to the interchange of the pairs of indices (e, @)
and (8, v) and therefore their number is reduced to 78 independent matrices.
Hence, the most general decomposition of the double commutator (23) takes
the form

(X%, [X7, m2]] = eoort, A + U, (24)
where A7, behaves as an 18 dimensional isovector and an antisymmetric .
four tensor, while U is a 60 dimensional symmetric isotensor and a symmetric

24

four tensor. The restriction of Eq. (24) to 4 = » = 3 and to 4 =1v = 4 must
give Eq. (8) and (15). This implies

(X3, [XE, m?]] = Ug = Seom? (25a)
and ,
(X5, (X4, m?]] = Ug = 3¢m?, (25b)

The last relations tell that U% behaves like an isoscalar and an isotropio
symmetric four tensor. There is only onc such tensor, namely.

U = 3a63,,m2, (26)

where mj behaves as an isoscalar and a four scalar. ,
In order to put Eq.(24) into group theoretic terms, we define an isovector
and a four vector Z% by

HNN. m?] = .IwNn T ‘ (27a)
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and write Eq. (24) as
(X5, 78 = 18908 4ymZ - igxfr 4t . (27D)

The matri A 4 i
trices m2 and 4 w Canl now be expressed in terms of X' = and Z% as

1
2 __ (3 (-3 :
mi = — X5, 2] (28a)

and
i

mne.hl lwl mamemNnuNS. (28b)

E@.Em use of the Jacobi identity the commutators [X%, ml] and [X= A? ]
are given as follows (see the Appendix) o o

[X5, mi] = —iZe (29a)
and
[X=, 48] = 196¥(3,,77 — ovZ%) -+ 8% Ry, . (29b)
Here Ry, is defined as
1 :
.Nwmhq = = 'w.. _HNM.J kANL

and it is an isoscalar and totaly “antisymmetric four tensor of the third

rank obeying the commutation relations:
(X3 Bow] = —i(SesA%, — doudg, + 85y ALZ). (290)

R It mr.oEm. be also noted that maftrices m2, Z;, A%, and Bouy agummomE as the
irreducible tensor under rotation in the isospin space and in the four dimensional
space and therefore fulfil the standard commutation relations

(2% m5] = [J 4y, m2] = [I%, Bypp] = o, (30a)
[I=, &L = feadr 4%, (30b)°

[I* ZF1 = iexbvZ?, . (30¢)

H.N ws Nﬁ = Kw%Nn — 8 Z%), (30d)

H.NE: .mwme..ég == ma%m.w:qs - weqmwtme vT wx..kw%q = wnm&w&& + Wtqmwés - wnsmw.@qv.
(30e)

[, kmmd = Rw%hna - weakmnm - w%&m.. + w.ghnnv. (30f)
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The sets of relations (29) and (30) show that the matrices mg, Z, A, and
Ry may form a 14 12 4 18 4 4 = 35, a 35-dimensional tensor of the
group SO(7).

To prove this we first rewrite the commutation relations (20) in a single
compact form introducing the standard notation for the generators J,; of the

80(7) group by

Jap = J s, ifa,b=1,2, 3,4

Jap = Jog = —e%87]7, ifa,b=5,6,17

Jap = Jou = X5, fa=256,17
b=1,234

The commutators (20) are then rewritten as
Vav, Jea]l = i(SveTaa — Svad ac — Sacva + 8aad ve). (31)

Next we define a totally antisymmetric third rank tensor of the group SO(7)
given by .

Tave = Tapy = tagyms, ifa, b,c=25,6,17

ife,b,c=1,2 3,4
ife,c=1,23,4
b=25,6.7

Tave = Tuve = Nwtu@.

Tave = Ty = A4,

e

~and

N._avn = %Quk = mnmﬁN.mu m..m&u b= 5, 6, 7,¢= L Mu 3, 4.

This definition of the tensor Ty, is used to rewrite the sets of commutation
relations (29) and (30) in a single compact form as

[av, Teael = i(30cT'age — SvaTace + SveTaca — dacTvae + SaaTvce — SaeTvoa). (32)

The last commutation relation proves that the matrices my, A%, Z and By,
are components of the same 35-dimensional totally antisymmetric third
rank tensor of the group SO(7).

We now complete our proof by deducing from Egs. (21), (27a) and (30a)
that the difference m2 — m§ commutes with J,p, i. .,

[Jap, m? — mi] = 0. (33)

This relation implies that m? — m2 must behave as a scalar m under the
S0(7) group transformations and hence the mass squared matrix m2 is given

as the sum
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m? = mZ 4 me, (34)

of the SO(7) scalar m2 and th. :
;  Seslar Wy e component m; of the 35-dimensional totall
antisymmetric third rank tensor, as was to be Mﬁogm. il

APPENDIX

S»Hrm wwumoma _om this appendix is to derive the commutation relations which
sucaﬁma in the .vuowm of the tensorial character of the mass squared matrix.
e start by considering the matrix relation (27b) which is of the form
[X3, Z8) = 1568 ,,m? + igxf7 4% (A1)
The matrices m2 and 4}, are now rewritten in terms of X7 and Zf as
m2 — i X* 7o
4 .Il.l. H,N —” ENN}H A>.Mv
and
A% —. m ap @
§ == Xz, 7 (A.3)

The commutator [X?, m2] and [X? A7 i i
o th i i M g 4] and [ ¢» 4] can then be written by making use

- B - 1 x
[X5, m3] = B {5, (X3, X;11 + X2, [22, X0 (A.4)
and mml.mwl.
i
[X7, 451 = Py e{[Z,, (X5, X2)] + [X=, 22, XA} (A.5)

Carrying out the algebraic reducti i
) uction by using the commutation relati
(20), the following intermediate reults are obtained ion nelations

LUK, mi] = — 5iZ8 + epor[X2, 47, (A.6)
and
N B o i % o
[ Xy, AL] = iefva(3,, 77 — 8ovZy; + 8, Z7%) + [X2, 47] — OVA[Xx, A%).  (A)

B ﬁwﬂw@ma a.@ﬁmﬁob (A.7) is then used to determine the second term on the
umm .»P nd .m:wo of Eq. (A.6). This yields the result which when inserted into
4. (A.6) gives the final form for the commutator in question, namely
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(X3, mf] = — iZ8. (A.9)

e
Summing over the § and y indices in Eq. (A.7), the following relation is
obtained
(X5, 45,1 = — [X], 4], (A.10)
which implies that a matrix m&: defined by
By = — 3i[X7, 47,], (A.11)
behaves as an isoscalar and totally antisymmetric third rank four tensor.

Making use of the definition (A.11) along with the relation (A.7), the commuta-
tor [X%, A%] can be calculated which, when inserted into Eq. (A.7), yields the

result
[xz, th = 1e%87(80uZ} — 3evZ7) +- 18%FRgpy . (A.12)
The commutator [X?, Ry,,] can be evaluated in a similar way to complete
the results which were used in the second Section.
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