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MEASUREMENT AND IRREVERSIBILITY IN INFINITE
SYSTEMS!

PAVEL BONA¥*, Bratislava

The problem of measurement in the quantum theory is an old problem.
There have been various attempts to solve it. None of the proposed solutions
was generally accepted. During the last few years there have been attempts to
use a mathematical approach suitable for the description of infinite systems.
It seems that the approach may give a formal solution to the measurement
problem. ‘

In the following talk I would like to show why it is necessary to turn to
infinite systems if one wants to find a solution to the measurement problem.
The talk is just a noncomprehensive survey with no pretence to originality.
It is divided into three parts. The first part contains the schematic formula-
tion of the problem. In the second part we shall exclude some approaches
which, from our point of view, are unsuccessful. The main part of the talk
is the third one. We shall dicuss there some new possibilities to solve the
problem of measurement via the introduction of systems with infinitely
many degrees of freedom.

I. SCHEMATIC FORMULATION OF THE PROBLEM

The problem is essentially the one of the “reduction of the wave packet’.
In the von Neumann formulation of quantum mechanics there are two basically
different processes of the time evolution of the physical system. The “process
of the second kind”’ is described by the one parametric group of time translation
corresponding to the Schrédinger equation. The “process of the-first kind”’
is a rapid and irreversible change of the density matrix g. The change oceurs
when some quantity @ is measured. The matrix ¢ may describe either the
microscopic system or the compound system micro plus apparatus. In the
same way @ represents respectively a quantity related to the microsystem
or to the compound. If not stated otherwise in the following the “system”
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means the compound. Let go be the density matrix before the interaction of
the micro and the macro systems (i. e. the apparatus). After the ineraction
of the closed system (i. e. the process of the 22¢ kind only) we obtain the
density matrix g. According to von Neumann the observer then enters the
game and g changes to ¢’ by the process of the 1%t kind:

go > o —~ o = PPy ,
gna | qst i ]

where P; are projections on eigensubspaces of Q. The quantity @ represents
here a ‘“‘pointer position” of the system. According to our point of view the
observer plays no role. Consequently g and ¢ should be physically equivalent.
The expectation values of all observables should then be the same in the
states ¢ and ¢’. This immediately leads to the condition [4, P;] = 0 for all P,
and all observables 4. This condition is physically equivalent to the existence
of a superselection rule, which makes the vector-states from different subspaces
P; mutually incoherent. . v

The problem we want to discuss here is the question of whether it is possible
to describe the irreversible process of measurement without postulating any
special “processes of the 15t kind”’. We shall call an “ideal solution” of our
problem the strict equivalence of the processes of the first and the second
kind in the sense specified above. Then the first problem for the ideal solution
is to construct a mathematical theory of big systems, where some super-
selection rule really works. The second problem is then the question of the
time evolution in such systems. The last problem is the consstruction of realistic
models.

The question of the description of measurement-like processes is connected
with the question of general irreversible processes. The complex system ob-
ject plus apparatus is only an example of big systems with an irreversible
behaviour. We consider here measurement as an objective physical process
independent on an observer — contrary to the von Neumann approach. For
a given big system we may then expect the occurrence of some objective me-

Fig. 1. A — macroscopic “rest’; B —
arbitrarily chosen “elementary part”.
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asurement-like processes regardless of their usefulness for any measurements.
For example, in some big system we expect such a behaviour as if each ele-
mentary subsystem were measured by the “rest’’ of the big system (see Fig. 1).

II. EXCLUSION OF UNSUCCESSFUL SOLUTIONS

Here we want to determine in a few words our way of seeking an ideal
solution. . ,

We can get the wanted “reduction’ or “irreversibility’’ in ‘open systems
by introducing suitable statistical fluctuations to the interaction or to the
boundary conditions [8]. Nevertheless, the restriction to open systems is in
some way similar to the von Neumann influence of an observer: this is not
the case we are here interested in. Other approaches are based on radical
changes of @ﬁ@ﬁ?g mechanics, e. g. the introduction of some nonlinear
processes [9]. What we want to discuss here are the approaches, which keep
the standard formalism of quantum mechanics undisturbed as far as possible.
In the following we only exclude the “reduction postulate’ from the standard
theory. .

The ideal solution is impossible, however, in closed systems with a finite
number of degrees of freedom. In such systems all bounded hermitean opera-
tors in the respective Hilbert space correspons to observables, i. e. there is
no superselection rule. We can illustrate this by the fact that the (*-algebra
of the system of a finite number of harmonic oscillators has only one irredu-
cible representation (up to the unitary equivalence).

Summarizing we can say that the only way to approach an ideal solution
is to deal with systems with infinitely many degrees of freedom. This assertion
seems physically acceptable, because, as far as I know, irreversibility is spe-
cific for big systems.

III. INFINITE SYSTEMS

To make things clear I shall start with a simle example and later on I shall
pass to more general considerations.

1. An example

Tet us consider an infinite chain of spins } with two-dimensional Hilbert
spaces G, n=0,1, 2, .... Then the W*-algebra of extended operators on
the Complete Direct Product Space (C.D.P.S.) $C% = #g,
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N& = H¢®HH® R P} ®h§®~§+~® ey
k&S € .w AQMVu .
where A4, are operators in G2 (Pauli matrices), forms the algebra of all obser-

vables in an infinite chain. Denote this algebra as By. Let |é,) be the state

o«

of the n-th spin oriented in the direction €,. |{e}) = ® [¢x) is the vector

n=0

product state in the C.D.P.8. # . (For details regarding the theory of C.D.P.S.
see [1] — general case, and [2] — a short survey for a spin chain). Let us
sketch here the structure of C.D.P.S. and the algebra By.. The scalar product
of the two vectors [{e}> and |{¢'}) is defined by the relation

eyl {ep = MAMQ | €y = mm " | <&y | & |.
If the phases arg <€, | éx») = @, fulfil the condition
| 2, on] = oo,
we define the scalar product as zero.

To each sequence {€,} = {e} we define the equivalence class C{e} and also
the week equivalence class Cy{e} of the product vectors |{e'}> by the relations:

O} KD ~ e = 3 1Gn 15> — 1] <
Cofe}: [P & 1feh = 3 l1Ga 153 | =11 < .

By completions of these classes we obtain respectively a separable Hilbert
space #'g, — the co called ID.P.S. (the incomplete direct product space),
and a nonseparable Hilbert space ¢, . Any ¢, is a direct sum of inenu-
merably many #¢’s differing from each other by an infinite phase factor.
From one ¢ to another 5°¢’ contained in the same £ we can pass by
a unitary operator U({z}), where

NNAANU _ A@MV = @MN§ _ N§Vv“ _Nﬁ_ = “_.v M _ @H.m Nﬁ_ = 0.
All vectors U({z}) | {e}> belong to the same g, . The vectors [{e}> and
“ U({z}) | {e}> belong to the same ¢ if and only if

D larg za| < 00, —w < argz, < m.
n

A basis in #y,, may be constructed as follows: Reverse a finite number of
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spins in the state |{e}), all states obtained in such a way from the same state
form a wanted basis. The whole C.D.P.S. 5y is a direct sum (or integral)
of # C®

%@” @%Q—e.

Denote the projector onto 5#¢ as Pc¢ and let U({z}) be the unitary operator
described above. The structure of the algebra of observables By in our spin
chain is described then by the von Neumann theorem [1]: The bounded linear
operator 4 in the C.D.P.S. belongs to By if and only if it fulfil the relations

_HKAJ .NvQ“_ =0, _HKA.V qAANU”_ =0,

for all P¢ and all U({z}).

This theorem is true also in the general case of the C.D.P.S. In our terms
the theorem implies the existence of a wanted superselection rule in the algebra,
of observables. The superselection sectors are the subspaces of £ . Repre-
sentations of the algebra of the observables By in all the subspaces L.D.P.S.
H¢ of an H', are unitarily equivalent (on the question of equivalence and
irreducibility of representations of the algebra By in various ¢ see,e. g.
[31). The form of a general element of algebra of observables in the C.D.P.S.
is illustrated by our Figure 2.

Possible operators of the macroscopic observables are here the projectors
Pcyy and their real linear combinations. The classification and interpretation

 43)

Uy A

Uiz)

Fig. 2.

153



of such operators is, however, non-trivial. In our example, e. g. the operator
of the average spin s, does not exist in arbitraty 5 , [2]. In a given
determined by a sequence {€,} it is:
N N
25, = lim 23 Li ! =l ! e
im 2sy = lim— =lim — e
N A= Noo N S Now N "
a=0 n=0
and the existence of g mowmﬂmm on the convergence of the righthand side. We
can expect a similar situation for other intensive quantities. For extensive
quantities the situation is even worse [2].
What we want to discuss next is the &nomSoh of the time evolution. As an
example of measurement-like evolution we define [4] the unitary group W(¢)
on the D.P.8. /g by the following relation

1 (0)
W) = Py + P;U(H) , PE = IUW.HW

U@ | {ep = léoy ® n ® exp (i0{t) | én).

The spin with n = 0 plays here the role of the measured microobject and the
rest of the spin chain » = 1, 2, ... is a measuring device. If we choose the
initial state of the device as y, with all spins pointing up, then the two states
of the compound @, and &_ are weakly inequivalent (and hence macroscopi-
cally different) in @H.Eﬁ.ﬁ.w% short. times ¢ £ 0: we have

=WE|oP =41 Q.

Any observable 4 € w# of the compoéund system at such times has vanishing
matrix elements between @, and @_. As an initial state of the micro-object
we take an arbitrary [éo) = o, | o = +1)> + «_| 6 = —1) and the initial
state of the compound system is @(0) = «, @, (0) 4 « P _(0). Then for an
arbitrary short ¢ =~ 0 and all observables 4 we have

D) | AD(6)) = |, [ D) | ADL(1) > + o L D_(E) | AD_(2))-

We may ioterprete the last formula as the wanted ‘reduction’” obtained
without any “reduction postulate”. The process is periodical in f — there is
no true irreversibility. The time evolution in this case is weakly discontinuous.
The continuous evolutions may lead to the reduction in the limit ¢ » oo only [4].

Let us now condider a big but finite system. For such a system there is no
superselection rule in our sense. Let ' N be the number of spins in the chain
chain and let the finite-vector-product-states {{e}x> and |{¢'}y> be in the
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limit N — oo weakly inequivalent. Let A, be an operator acting only on the
first M spins, ||4a}| < 1. Then for N - oo we have [4]

[K{e'}w | An | {e}w> | < Ofexp(—alN?)], ca> 0, & > 0,

uniformly for all [|43]] < 1 (M fixed) and some «, ¢

The last relation shows now the “overlap” for macroscopically different
states decreases with an increasing number of degrees of freedom. Hence we
ean hope that an ideal solution with infinite systems will be a good approxi-
mation for real systems with a large but finite number of degrees of freedom.

2. General considerations

In the general case of infinitely many systems with Hilbert spaces 5, « € 1
(I-infinite set of indices) the general structure of the C.D.P.S. and of the algebra
By of operators in it is the same as in the example of the spin chain (Fig. 2).
In all such cases we obtain a superselection rule automatically. There is, howe-
ver, an ambuguity in it: The associative law in the D.P.S. is not fulfilled
without restrictions [1].. If we divide the manifold I into infinitely many
nonintersecting manifolds I, with more than one element: I = {J I,, I'infi-

vel
nite, we obtain a new C.D.P.S. .v\@ by the relation: wN@ ® (R H) =

yef  «ef

= ® . The structure of the respective algebras By in # g and # g in

V€7

general differs, By # By . This fact may play anontrivial role in systems with
interactions. In finite decompositions (I finite) the associative law is fulfilled.
Problems with the above mentioned ambiguity will not be considered here.

In a general W*-algebra ¥ of observables the classical observables are
defined as elements belonging to the centrum Z of A :Z = A W', where
' is the commutant of W. Operators in the centrum commute with all the
observables of the system. The centrum of By in the C.D.P.S. is generated
by all projectors Iy, .

Once we have defined the algebra Y of observables, we can forget the specific
representation in the C.D.P.S. A state of the physical system can be described
then by a normed. positive linear functional w(4), 4 € ¥. This shift. from
a specific faithful representation to an abstract C*-algebra is sometimes necessa-
ry (a short survey of C*-algebras and the application to QIT see in [7]: for a
good survey of algebraic methods in contemporary physics see [10]). Ife. g.
the time evolution is defined by such an automorphism z; of W, 4; = 7;4, which
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cannot be described by a unitary transformation in the Hilbert space H, of
a representation n(4) of N,

n(4;) # U)n(A)UH(0),

the state shifted in time cannot be described by a vector y, from the same
Hilbert space 5, as was the initial-state-vector yo. As seen above, the existence
of a superselection rule is fully given by commutation relations, i. e. as a pro-
perty of an algebra of observables independent from any specific (faithful)
representation.

In the example above the time evolution was defined as a unitary transfor-
mation W(t) of the vectors in the C.D.P.S. The transformation is weakly
discontinuous and the Stone theorem deosen’t apply. In our case the system
has in fact no Hamiltonian {4]. The operators W (f) don’t belong to the algebra
By and the corresponding unitary transformation leadsfrom By : W{t) AW (t)=
= Ay¢ By in general). The isomrophism of By defined by W(¢) is not an
automorphism. However, an automorphic time evolution occurs in the usual
treatments of the general theory of big systems (see, e. g. [5], [6] and [7]) —
at least as the automorphism of the weak closure of the respective representa-
tion. For automorphie time evolutions there appear two points:

a. the impossibility of “reduction’ in finite times,

b. the non-implementability of a general automorphism by a unitary trans-
formation in a given representation.

The general theorem asserts [4] that an automorphic time evolution cannot
lead to reduction:

acaut W, o1 w2, wixd) = a(d)=> @14 o2.

The relation & (“‘disjointnes’) may be interpreted as “incoherence in any
representation in which w; and 2 are vector states”, i. e. if y; € #n, wi(4d) =
= (i, n(A)ps), i =1, 2 and oy § w2, then (1, n(4) p2) = 0 for all 4 €.
Nevertheless, it is possible to construct such automorphic time evolutions
that the wanted reduction is obtained in the limit ¢ - co. Examples of such
models are in paper [4]. Let us consider such an automorphism ;. Let ¢

and y; be coherent vector states in some representation z and let states &;(4) =
= Hm (g, 7(r:A)ys) be disjoint: @ & @2. Then one can prove that for coherent
R A ] %

superposition y = oayy -} aayz we get in { > 00 a mixture &:

@(4) = lim (p, n(rd)y) = laf@u(d) + |eal?ax(4), 4 e

In this way we can get the wanted reduction in ¢-» co. This is a “true irre-
versibility’’ because of the infinite time interval.
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By an automorphic evolution it may happen that the automorphism 7, is
not unitarily implementable in some representation z. Then for the initial
state y € #, and 4 €A we have

wi(4) = (y, n(r1d)y) # (ye, n(A)ype) for any y; € ;.

The time developed state is now the linedr form w, which is not expressible
as a vector state in ;. .

Summarizing, we can say that for the description of infinite systems it is
convenient to use the abstract algebraic formulation. The realistic models
in such a formulation, as far as I know, are still unknown. The general features
of such theories indicate, as I have tried to show above that the abstract C*-
-algebraic formalism might be an appropriate formalism for the solution of
the problem of irreversible processes, the special case of which is the pro-
blem of measurement in the the quantum theory.
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