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DETERMINATION OF CDD-POLE PARAMETERS IN THE 7N
I = J = }{ STATE FROM THE REGGE ASYMPTOTIC
BEHAVIOUR OF PARTIAL WAVE AMPLITUDESL

WINFRIED BRANDT*, FRANK KASCHLUHN¥,
MICHAEL MULLER-PREUBKER*, Berlin

As recently shown, the -attempt to combine the Regge asymptotic be-
haviour with partial wave dispersion relations in a consistent manner leads
to an infinite set of finite energy sum rules for each partial wave.

These sum rules are used to determine CDD-pole parameters in the pion
nucleon I = J = 1/2 state. To avoid model dependent ambiguities we take
in a modified N/D approach an input caleulated from empirical phase shifts.

L INTRODUCTION

In the present paper we study the question of how far the high energy
behaviour of a single partial wave amplitude, following from the Regge pole
dominance of the whole amplitude, determines CDD-pole parameters [1].

To approach the problem, we use finite energy sum rules for partial waves,
which have been derived for the scattering of scalar particles under the
following assumptions [2—4].

i. The whole amplitude in the s-channel is asymptotically determined by
the Regge poles in the - and u-channel. (The generalization to the Regge cuts
is straightforward.)

ii. Only the sharp forward and backward peaks contribute to the partial
wave projection. In this region the trajectories are assumed to be linearl 7
rising.

iii. The partial wave amplitudes obey dispersion relations. In these relations
a cut off S is introduced, only to indicate the region, where the Regge asympto-
tic behaviour is valid.
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Then the sum rules follow from the fact that no pure 8~ powers occur in the
asymptotic expansion of the partial wave amplitude. It is possible to formu-
late such sum rules for the realistic case of the =N scattering too [5]. We write
them down in the w plane. Therefore in all calculations the 8y; and the Py
waves are joined together by the Max Dowell symmetry [6]. In a modified
N/D formalism [7] we compute phase shifts with an empirical input potential.
These phase shifts generally are functions of unknown CDD pole parameters.
To determine the parameters we substitute these functions into the sum
rules. If we satisfy the first two sum rules by one CDD pole in addition to the
direct channel nulceon pole, then the corresponding output phase shifts are
in good agreement with the experimental ones.

The sum rules are written down in Section II. In Section IIT we formulate
the N/D equations and their input potential. The results are given in Section IV.

IL. FINITE ENERGY SUM RULES FOR PARTIAL WAVE AMPLITUDES

We consider the sum rules for the nlV scattering in the I = J — 1 state.
We have [5]
i .
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where M(= 6.75) is the nucleon mass (m, = 1) and ggy,(= 13.5) is the pion-
-nucleon coupling constant. Further we have assumed for W > M +1
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The function g(w) is asumed to produce the correct threshold behaviour. The
first term in (1) represents the sum of all “lefthand* cut contributions up to
the cut off on the imaginary axis. The constants " on the right-hand side of
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(1) depend on the Regge pole parameters. The dominant contributions are
due to meson trajectories. If w, is suf ficiently high, in the first two sum rules
a trajectorie with the signature —1(p) in the second two a trajectorie with the
gisnature -1 (Pomeron P) dominate. We have [5]
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Here the Pomeron intercept is put op(0) = 1. The «;(0) represent the slopes
and C}(0) the residues of the Regge ansatz in the invariant 4’ amplitude at
{ =0 [8]. For the numerical calculations we take the parameter values of

a fit of Chiu et al. [9]. In their notation and Pparametrization we have:

1 \=®
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Ky is a scale constant (~ 1 GeV). The parameter values are given in Tab. 1.
There are reasons to take this fit with big slopes of P and P’. We have cal-
culated the asymptotic behaviour of 3(w) and n(w) depending upon results
of several fits [9]. We found the smaller the slopes of P and P’, the higher the
point W, where § and 7 start to grow monotonously to asymptotic limits
n

7(w) wie 1, 3(w) ST Mﬁv.\emba@mow .

When we took such fits with «;(0) ~ 0. 10, we obtained w, ~ 103. On the other

Table 1
Regge — pole parameters [9] taken in the numerical calculations
a(0) a’(0) [GeV-2] C, [mb GeV]
o : 0.58 1.02 1.49
P 1.00 0.34 7.43
P 0.72 0.34 16.60
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hand with the values in (6) we got SM ~ 102, Of course we should chose w, ~
~ w;,. Therefore the compromise between good accuracy of the numerical
solution of the N/D equations and the use of the best fit lead us to (6) and
w, = 100.

III. THE POTENTIAL OF THE N/D E QUATIONS

To calculate the phase shifts of the P13 and Si;. waves we use the N/D
equations in a formalism similar to Frye and Warnock [7]. In these equa-
tions the above mentioned cut off w, occurs. Therefore from the mathematical
point of view we have to solve the same type of equations as in the strip
approximation [10]. For practical purposes it is sufficient to use the method
of the matrix inversion {11]. .

For M + 1 < |w] < w, we have in the presence of n, CDD poles (L;, Cy)
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we have for the output phase shift
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The input function ReB(w) has to fulfil two conditions:
i. Along the finite physical cuts ReB(w) must be identical with [12]
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where the right-hand side is calculated with empirical phase shifts.

"ii. The discontinuity of the finite nonphysical cuts disc h(w) must be con-
sistent with the finite energy sum rules (Eq. (1)) calculated with empirical
phase shifts too.

Only in this way one can hope to get results comparable with the experi-
mental data. Such a potential could be constructed for instance by a pole
approximation of long range forces (considering crossing relations) and of
suitably adjusted short range forces.

However, for our calculations it is not necessary to know completely the
input, i. e. to have an explicit knowledge of the disc A(w). Therefore we only
assume that a function ReB(w) should exist satisfying the two above mentioned
conditions. Then we solve the N/D equations with ReBeyp.(w) and calculate
the integrals

iwe
1
— | dw'disch(w jw'r1
k1
u
using the sum rules (1) with empirical phase shifts [13]. Thus we can replace
an approximative pole input by a model independent one. (Of course our
input contains assumptions about the smoothed behaviour of the phase shifts
in the energy region where the phase shift analysis fails.)

We remark that ReBenyp.(w) contains the direct channel nucleon pole. To
examine the case without this pole, we have to subtract its contribution
3 QW;?«

8t wt+ M
%HOE Hﬂ\Qm&Snﬁ.ASv.

IV. RESULTS

‘We study the N/D equations for three cases:
(a) neither the direct channel nucleon pole nor a CDD pole,
(b) with the nucleon pole but without a CDD pole,
(c) both with the nucleon pole and with one variable CDD pole (C1, Ly).
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Tn all cases the first four sum rules are tested by substituting the output phases
doue into (1). The numerical caleulations give the following results.

We have not drown other curves in other

regions where for instance only one

sum rule is satisfied. Thus we see that, there is one point where the first two

For the cases (a) and (b) the sum rules cannot be fulfilled. The disagreement sum rules are fulfilled simultaneously (I; = —13.25 and C1 = 0.45). The
between the left- and the right-hand sides of (1) is extreme for the case (a),
but becomes smaller for the case (b). In the case (c) we sought the points 8(w)
where the individual sum rules are satisfied by variation of Cy and L, (Fig. 1). {deg]
The shown region is the only one in a wide range where the sum rules I, I, 160
III and IV are all fulfilled together within a small distance from each other.
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Fig. 1. Geometric locus where the sum rules I, IX, III and IV are satisfied. Optimal CDD Values of the individual parts of the first four sum rules
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parameters: Ly = — 13.25, Oy = 0.45. (UPC, PC, NP or Z, resp. denote symbolically the contributions of the nonphysical cut,
the physical cut, the nulceon pole or the whole left-hand side of the # sum rule (1),
diw) respectively.)
[deg]
180 - case r y@ P PC NP UrC
— (a) 1 —0.02 —11.36 —15.02 21.93 —18.27
%0 7 (b) —0.02 - 0.82 —2.84 21.93 —18.27
/ (5 —0.02 —0.02 —3.68 21.93 —18.27
/ (e)
/
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00 o @) 2 0.3 117.9 248.0 —147.7 17.6
/ (b)- 0.3 —11 129.0 —147.7 17.6
P {e) 0.3 0.3 130.4 —147.7 17.8
60 |- /
\\ // (a) 3 9.65 x 108 8.79 x 103 | —1.93 x 103 1.00 x 10° 9.72 x 103
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- e /,/ w {c) 9.65 x 108 9.568 x 10% | —1.14 x 103 1.00 x 103 9.72 x 103
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Fig. 2. S11 phase shift. — — — empirical; — theoretical. (c) 1.30 x 108 1.35 x 10 3.49 x 10 0.07 x 10 4.77 X 10
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third and the fourth sum rule are not satisfied at this point, but the “tube”
treated by the two solutions of the fourth sum rule has the smallest “radius’
there. Thus the determined CDD parameters are the optimum for the higher
sum rules t00. To get a better agreement of all sum rules, we should introduce
more CDD poles. Furthermore we see that the determined CDD pole position
L; agrees with that point, where the empirical Py phase shift crosses z for
the second time. The determined parameters correspond to the output phase
shifts in a very good agreement with the experimental ones (Fig. 2, 3).

Table 2 shows the behaviour of the individual parts of the sum rules (1),
in the considered three cases. For the third case we give the results for the
above mentioned CDD parameter values.

Finally we conclude that the finite energy sum rules derived from the Regge
asymptotics of the partial wave amplitudes are able to determine CDD pole
parameters if a correct input potential is used.
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