acta phys. slov. 23 (1973), No.2

INFINITE HELICITY SUMS AND GENERALIZED 0(1.2)
EXPANSIONS!

CHRISTOFER CRONSTROM,* Helsinki

We give a brief survey of the 0(1.2) expansion formalism for power bound-

ed multiparticle amplitudes and show that the occurrence of infinite helicity

“sums in the formalism does not present any serious convergence problem.

The role of the so-called nonsense terms is clarified, and it is shown that these

necessarily cancel against identical terms in the O(1.2) integrals. A modified

formalism in which the necessary cancellations are built in explicitly is sug-
gosted.

I. INTRODUCTION

In this paper we want to discuss certain problems which are connected
with the occurrence of infinite “helicity” sums in a generalized complex angular
momentum “partial-wave” analysis of multi-particle amplitudes.

That there may be convergence problems connected with infinite helicity
sums has been noted already in 1964 in a peper by Omnés and Alessandrini
[1], which, among other things, deals with the extension of the Froissart-Gribov
formalism to three-particle amplitudes. These questions were taken up again
in a more recent paper by Dash [2] in which is was suggested that {(divergent)
helicity sums should be regularised by introducing convergence parameters,
which, hopefully, could be made to disappear in the end of some dynamical
calculation scheme involving complex J unitarity equations.

Here we want to show within the context of a generalised 0O(1.2) expansion
formalism of the kind developed by Klink and the present author [3] (this
paper will be referrend to as I in what follows), that the infinite helicity sums
need not give rise to serious convergence problems. Furthermore we clarify
the role of the discrete terms (so-called non-sense terms) in the generalized
0(1.2) expansion formalism, and indicate how these terms can be included
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explicitly in the integral representation of the amplitude which group-theore-
tically corresponds to the principal series of representations of 0(1.2). This
last step is made possible by slight modification of the formalism of I, and
will be given in Sec. IV below.

is square integrable on the group manifold, i.e. O(s-¥/2) for large s, where s
is the c.m. energy squared in the channel of the incoming particles. Sec. 111
contains a brief summary of the generalised O(1.2) formalism valid for general
power-bounded amplitudes, and a discussion of the convergence of the helicity
sums. In the next Section we then indicate how the formalism can be modified
80 that the sum of nonsense terms in the expansion gets included in the integral
representation which corresponds to the principal series of 0(1.2) representa-
tions. In this Way we arrive at a simple and compact expansion of the ampli-
tude, which should be of value in practical applications of the formalism. The
final Sec. V constains a brief summary and a discussion of our results.

We would like to stress that the discussion given in Sec. IV is entirely
non-rigorous and heuristic, since we prefer, for reasons of clarity, to defer
complicated proofs to later publications [4].

II. 0(1.2) VARIABLES AND THE CLASSICAL EXPANSION FORMULAE

The choice of group theoretical variables for a multiparticle amplitude
given below has been put forward in an excellent Paper by Bali, Chew and

of an earlier work by Toller, and for details of this and other developments
in “generalized partial-wave analysis” we refer to Toller’s 1969 review paper
(e]. _

" Decomposing the amplitude for the N-particle production process

h+@lv~+w+...+~<

into two clusters with 37 and N — M outgoing Particles, respectively, linked
by a fourmomentum transfer Qup, as indicated on Fig. 1, we can consider
the amplitude as a function of the invariant momentum transfer 45 — Q5
3M — 4 internal cluster variables V4 for cluster 4 and 3N — M) — 4similar
variables Vp for cluster B, and three “Euler”-angles o, g, ¥ which specify
a Lorentz-transformation of the momenta of cluster B relative to the cluster
4 which leaves Q5 unchanged,
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<L ..., NIT\AB) = F(t4z; «, 4, v Va, Vp). - (2)

For a space-like momentum transfer, which we consider here and in what
follows, the Lorentz-transformations which do not change Qap are 0(1.2)
transformations which can be decomposed into a z-axis rotation given by y,
and z-axis boost specified by the rapidity variable B followed by a z-axis
rotation given by «, :

oMRAma»cMmASVoM%Am? o (3)

Explicit expressions for these “Euler” angles in terms of scalar invariants
have been given in the paper by Bali et al. referred to above, and we note
here only that the hyperbolic cosine of the rapidity variable Bislinearly related
to the variable s = (p, -+ pp)2. ,

Having displayd the dependence of the amplitude on the Of 1.2) variables

, B, and y it is natural to perform an O(1.2) harmonic analysis of the amplitude,
i.e. write down its 0O(1.2) Fourier transform. For amplitudes which are square
integrable on the group-manifold, i.e. such that

2n 2n @
[ do [ dy [ dohg |P(a, B, )2 < oo (4)
0 0 i
the expansion reads as follows
Flo, B,y) = 3 fuy (chp) e-tua-ivy, (5)
Hy=-x
with
~itjm . M-1
= | oy e+ (14 Doty e
= — » v\ C el y » C
Fu () 2i tan n(l + &) u “ 2 .9= (0 d,
0

l=¢

(6)

A a A : &g

Fig. 1. Cluster decomposition of a general (2 > N) multiparticle amplitude.
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and

min s |7]) for =0
M- (Il 1#]) for pow )
0 for uv << 0

M-1 :
with the convention that 2. =0if M =0 or 4. The number ¢ which oceurs

l-¢

(defined according to some appropriate convention) of the barticles in the
cluster 4 (and B) is a half-odd integer then so are # and ». Otherwise they

are integers., The coefficients’ Juwlchpg) and a,(), respectively, in Eqs. (5) and
(6) are given as follows,

2n 27
1 )
Jur(ehf) = — | du dyF(a, B, y)eina+ ivy (8)
472
b 0 .
and
4w(l) = WQ chf fuy(chp) d;"}(chp). (9

1

For a discussion of the formulae above and a definition of the 0(1.2) d-func-
tions which occur in these formulae we refer to Vilenkin’s monograph on
group theory and special functions [7]. Here we may recall that the functions
&;AoFS behave essentially like Legendre functions of the first kind, in fact
dbo(chg) = Py(chp). Before Proceeding further, let us note that the occurrence
of the infinite sum over #and » in Eq. (5) is due to the fact that we are dealing
with a multiparticle amplitude; for a 2 - 2 amplitude the sum in Eq. (5)
would degenerate into one’ term only, with 4 and » equal to the differences
of she crossed channel helicities of particles 4 and 1 and B and 2, respectively.
Let us then discuss the convergence of the (u, ») sums in the representation
(5). From the mathematical point of view the convergence of the double
Fourier sum in Eq. (5) presents no problem as all, since according to the
classical 0(1.2) expansion theory we know that the representation given by
Egs. (5) and (6) for Square integrable functions holds in the sense of the L2-norm

on O(1.2). This means that we have the Parseval-Plancherel formulae,
4x*[ [ [dady dp shp|F(a, g, y)j2 = S ap sh fs(chp)[2 (10)

“yy

and
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o =+
4 | dpohpifuchppp = — | DALY o (11)
) 2i tan n(l 4- &) .
¢ ~§+i0
where
. IA+v+ 170 —1)
v vy —
DT, = M t+ 3 T+ u+ 1)l —y l@us(D)|2. (12)

The equations above show in what sense the representation given by Fgs.
(6) and (6) holds for L2-functions, For physical applications it is reasonable
to assume much more than just L2-summability of the amplitude F(«, g, )
with respeet to « and ¥; in fact one may assume that F(a, B, y) is of bounded
variation and continuous in « and ¥, in-which case the (#, v) sum in Eq. (5)
converges uniformly within intervals of continuity of the amplitude Fa, B, p).
Therefore under such reasonable conditions on the amplitude the convergence
of the (u, ») sum is not in doubt,

We can equally well interchange the (u, ») sums with the integral and
discrete sum over / in Eq. (6) with the result

a4
1
Fla, ) = — =+ A\,S;S D, (o, B, ) + (13)

2i tan n(l +¢) 7,
-#+i0 wy

-1-1

F304D S awl) Dato B ) +

l-¢ HYy=—m

l_l W Q + W M aheANv @.W:.ARM mu v\v“

l=c ny=l+l

where
Dl (e, B, y) = e-ina d;, (chp) e-irv, (14)

The representation (13) expresses more clearly than Eqs. (5) and (6) the
group-theoretical content of the 0(1.2) expansion; the integral in Eq. (13)
corresponds to the principal series of representations of O(1.2), whereas the
discrete sums in Eq. (13) correspond to the discrete series (ascending and
descending) of representations of 0(1.2).

An expansion of the form given by Eq. (13) formed the starting point in the
discussion of the (supposedly divergent) helicity sums in the paper by Dash
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referred ».wo Previously, However, it should be observed that Dash replaced
.SE genuine O(1.2) expansion coefficients a, (/) defined by Eq. (9) in the

but involves a series of manipulations, some of which must be illegal, if the
convergence difficulties observed by Dash are real, since we have already
seen that the genuine 0O(1.2) expansion does not involve any convergence
difficulties. i
The genuine O(1 -2) expansion coefficients aw(l) are frequently in the literature
ascribed properties which one may expect Froissart-Griboy amplitudes to

The oru“ummenu.mmemo property of a Froissart-Gribov amplitude is that it should
be @w&u&a. in its I-plane for sufficiently large values of Rel. However, it
can immediately be seen from Eq. (9) which defines the 0(1.2) expansion

(doo(@)] = [Py(a)] = wimet + 2 - 172 I+ ow - (15)
x

From Eq. ( 15) it follows that the coefficient agy(l) can at most be analytic in
some finite strip centred around Re I = —1} if the function Foo(chp) decreases
sufficiently fast as chf > 0. The circumstances indicated above should be
mdo:.mr to cast some doubt on the legitimacy of replacing the 0(1.2) expansion
coefficient in Eq. (13) by a corresponding Froissart-Gribov amplitude,
Hwowm_% enough this question becomes largely irrelevant in dealing with
realistic amplitudes (which are not square integrable in chp) since for such

amplitudes one has to generalize the O(1.2) formalism anyway, and it turns

cluster variables. We denote this amplitude by Fle, B, y) and project out its
double Fourier components just as in Sec. I,

2n 2n

1
Juw(chp) = MM da | dy F(a, g, y) eiux+1ivy, (16)
0 I

A conservative estimate (the Froissart bound) of the asymptotic behaviour
of fus(chf) is fu,(chf) = O(B2 chB) as B — co.

In order to deal with asymptotically growing functions Eq. (9) of the
previous section can simply be generalized by replacing the funetion d;i1 (chp)
by a second kind function e,(chp), which is related to dl,(chp) in the same
way as the second kind Legendre function Qi) is related to P(z); in fact
epy(chp) = Qi(chp). We thus define the expansion coefficient b,,(l)

buw(l) = [d chp fu(chp) el,(chp). (17)

It follows from the properties of m,wkovmv (as shown in I) that Jur(chB) must
have kinematic zeroes of the order % (u — v) at chf = 1 in order that Eq. (17)
be meaningful, or strictly speaking one must require that

x — 1\ la—r

where Jur(x) = &lﬂn Y (), (18)
%SQ&A&N — 1)V =12 1P ()| < 0. (19)
1

The number p > — }in Eq. (19) indicates a power bound on Jwlz) for x - oo,
i.e. roughly speaking f.(x) < 27 as  — co. If the function f,,(x) satisfies the
conditions (18), (19), then the function bu(l) defined by Eq. (17) is analytic
for Rel > p (save for fixed poles due to the €,(z) function at | — +pu—1,
4+ pu — 2, ...) and we have the following representation ,

o

1
Inteb) = — _ U2 + 1) bnl) A (chp), (20)
i :
Re l=pur
where pu > max (p, -+ #—1, +v—1). Egs. (17) and (20) constitute
a unique generalization of Eqs. (6) and (9) for the case of power-bounded
fanctions fu,(chp).
The total amplitude is obtained as.

F@,f,7) = S fu(chf) e-tua -isy (21)

HyP=—00
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m_b.om the coefficients Ju(chp) are the double Fourier coefficienss of a Fourier
series which by hypothesis is convergent, it is clear that one may insert the
Tepresentation (20) in Eq. (21) without destroying the convergence of the
double Fourier series, since she right-hand side of Eq. (20) merely reproduces
the given coefficient Jur(chp).

poooz.:m ?w fixed poles of the integrand in Eq. (20) which are due to the
.».::a?osm &u(2) and d(z’), and shifting the line of integration to Rel = p
in Eq. (20) we obtain ,

1
Ju(chpy = ey % &E. + 1) bu(?) dL,(chp) -+ (22)
Rel=p
M1
+ NN ¢+ 3) aw(l) d',(chp),
=P
where
@uoll) = [d chfyn(chf) 1 (chp) (23)
1
and
min (luf, p]) if u >0
M=
0 i <o (24) .
with
Pe=[p+e]+1—¢ ; (25)
and ’
M-1
NMHo if M—1<p,.

Eqgs. Ewlwmv indicate clearly the similarity between the generalized O(1.2)
representation and the classical one given by Eq. (6).

Now Iet us substitute the representation (22) into Eq. (21) and formally

interchange the orders of summation and integration. We obtain
. -
Fla, B, y) = P dU2 4+ 1) X bu(l) DL (, B, y) + (26)
"y
Re I-p
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-l-1

FSA+ES o) Do fy) +

l=pe Ym0
+ M Q + Wv M Q\E\ANV .NVN.AQ“ \w. v\v.
l=pe mr=0+1 .

It should be noted that now we cannot rely on any group theoretical argu-
ments to show that the right-hand side in Eq. (26) is in fact convergent.
However, if the (4, ») sum under the integral sign in Eq. (26) is in fact diver-
gent, as indicated by the discussion given by Dash, then one may conclude
that the discrete sums are also divergent but that these divergences cancel
when the discrete terms are combined with the integral, since we know that
the (u, ») sum is convergent if it is performed after the integration and sum-
mation over 1.

The problems indicated above would of course become much simple if
one could combine the discrete terms with the integral in Eq. {22) into a com-
pact expression. That this is in fact possible will be shown in the next section.

IV. THE DISCRETE TERMS AND THEIR REMOVAL

Lzt us now return to Eq. (22). The discrete contribution to Eq. (22) consists
of non-sense terms (I < min [ul, 17]). For non-sense values of [ the &..A&Y
-functions have the following asymptotic behaviour

&y, (x) = O(z—+-1), (27)
! = non-sense

Thus for p > — ] the integral in Eq. (22) behaves in general like O((chp)?)
as chf - o0, whereas the discrete terms behave like O((chpg) 1),

A question which may arise is whether the discrete terms “really are there”,
i.e. whether they — because of some dynamical reason (such as unitarity) —
are in fact zero. That this is not the case can be shown heuristically as follows.
Consider a function 2(chpB) with the following asymptotic behaviour.

v

w(chp) = (chB)»=¢ (1 + O((chp)-)), (28)
>0

where N is a large positive number. An application of Eq. (22) would then
result in a representation for f2(chp) in which discrete terms with asymptotic
behaviour O((chf)™?) occur. However, choosing 2(chp) positive and re-
membering that d;5(chf) has no zeroes for chf > 1 one cannot obtain the

result a,(I) = 0 which could explain the paradox above. Therefore one must
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: general cases. One may then ask whether it is possible
.ao @o_:me‘o.e?m cancellation explicitly by an appropriate modification of the
integrand in Eq. (22). In order to see how this can be done let us consider
the following integral Tepresentation for the function &..Aoruv,

8
drel-r+i)r \ 2
Q.N:.AOTWV = 215 ch lm I_l 24 mrm "
2 2

2(chp — chyvz °* + 28
-8

2»
+ 24 orm +N|mrm
2 . 2

Z: =(e” — chf - jet/ [2(chp — chz)]2)/shg.

From Eq. (29) it follows that d},(chp) is essentially symmetric under > —J — 1

are cancelled by identical terms in the integral. In fact, preliminary calculations
[4] indicate that the discrete terms in Eq. (22) can simply be dropped provided
one replaces the msbo?.oz d’,(chB) in the integral in Eq. (22) by o,mmmzﬁm_:%
.QE function which ig obtained from Eq. (29) by integrating on 7 from 0 to B
Ema@mﬁ.m of from —g to B. The convergence of the (u, ») mz.E in the new repre-
sentation is thus simple to investigate and in fact it is clear that the (u, »)
sum certainly converges if it is taken outside the integral in the Eo&m&
wo‘.@m.w,@a:amﬁos. However, more important than the question of interchange-
..m_v:;rﬂ of the l-integration and (4, v) summation in the modified representation
Is the fact that this representation already as a built-in feature contains the

a v@n.nme memgm.cm womze for approximations of the kind which are invitable in
practical applications than the representation given in Eq. (22).

V. SUMMARY AND DISCUSSION

. We have given a brief review of the ordinary and generalized 0(1.2) expan-
sion formalism for multiparticle amplitudes and shown that the occurrence
ww infinite helicity sums does not pose any serious convergence problem
m contrast to the case of multi-Froissart-Gribov expansions. “
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A further modification of the mmsowmzsmm 0O(1.2) expansion formalism was
suggested, which enables one to include the so-called non-sense terms explicitly
in the generalized 0(1.2) integral representation. Since the modified expansion
formula contains as a built-in feature the necessary cancellations between
the discrete terms and the integral representation in the previously formulated
expansion theory, it is hoped that the modified expansion formula will be
a good starting point for dynamical calculations which inevitably involve

approximations.
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