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DISCONTINUITY OF THE REGGE TRAJECTORY
IN THE DUAL RESONANCE MODEL!

Planar case

HANS JURGEN KAISER,* EBERHARD WIECZOREK,* Zeuthen

K FRANK KASCHLUHN**, Berlin

The discontinuity of the second-order correction to the Regge trajectory
is caleulated in the dual resonance model. The evaluation is based on planar
loop diagrams. In contrast to the behaviour of the self-energy whose disconti-
nuity is not positive throughout the correction to the Regge trajectory
remains positive in the region considered.

I. INTRODUCTION

Recently, Neveu and Scherk [1] have investigated the planar box diagram

in the dual resonance model and derived an expression

Cnew =0 + 3t + g2 () + ... (1)
for the leading output trajectory up to the second order2. In order to interpret
their result based on a study of the asymptotic behaviour of the box diagram
they had to assume the reggeization of the model in higher orders.

This result should allow a test of the applicability of the perturbative ap-
proach to unitarity in the following sense: If a finite number of terms in exp-
ression (1) are expected to lead to a reasonable description, then they must be
small in comparison with the input term o; = a + } ¢, especially the output
trajectory must be asymptotically linear. Furthermore, already the second
order term of the discontinuity should satisfy the positivity condition necessary
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1 Talk given at Elementary Particle Physics Seminar at Pezinskd Baba, September
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2 The unit # in wich masses and fourmomenta are measured is fixed by the conditi-
on that the slope o’ of the trajectory in these units takes the value {, that means
p = (2a')12. As usual the external (spinless) particles are taken on the same

trajectory, i. e. they have the mass mg = (—a/a' )2 = (—2a)1/2x.
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for a resonance interpretation. In the case of the scalar self-energy in the dual
resonance model we have convinced ourselves that the discontinuity attains
negative values in certain intervals. On the other hand there is some resemblan-
ce between the self-energy and the correction to the trajectory such that
doubts with regard to the positivity of the latter arise. In the following section
we derive an expression for the disc X(t) and evaluate it explicitely up. to
¢ = 100 for various intercepts, with the result that the discontinuity is positive
for the £ values considered. We are aware of the renormalization ambiguities [2]
which, however, will not affect the discontinuity (to order g2).

To complete the investigation in the second order, one should also calculate
the contributions from nonplanar diagrams to the trajectory. These will be
given in a further paper. ,

II. DISCONTINUITY OF THE TRAJECTORY

Using a particular kind of renormalization [1}, the second order correction
to the trajectory is given by
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To calculate disc > (t) it is sufficient to integrate in the vicinity of x = y = 0.
Then the counterterm is no longer necessary and can be dropped. Therefore
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Note that the integrand in Eq. (3) differs from that of the scalar self-energy
by the factor
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only, which is singular at = y = 0. Nevertheless it is possible to apply the
Cutkosky technique to Eq. (3). Using
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we write Eq. (3)
—a—1 ~ay—1

disc () = disc | dz dy[diQx y [(A—=2)(1 —y)l1x

0
(5)
n@n+ yn) 1) 2amyn —an—yn
— exp| ¢ e
1 — anyn log (xy) n(l — xnyn)
1 1 .

X (1 — xy) [Play)]*

To get an expression explicitely given by Feynman propagators we expand
the integrand in Eq. (5)
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For any fixed value of £ only a finite number of terms does contribute to disc
2.(t). Again we use the independence of disc 2.(t) of the upper integration
boundary and calculate )
1
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We substitute Eq. (7) into Eq. (6) and apply Cutkosky rules after undoing
the Wick rotation in a finite number of terms
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The z integration can be performed analytically and we arrive finally at
_ O CunrOlt2 — 4k + 1 — 2a)t + 4k — 1)2]
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Eq. (9) is in accordance with the general result on the threshold behaviour
of Regge trajectories [3]

Ima ~ (t — «L.Fs&; ‘ (10)

restricted to the second order. (One has to take into account the restriction
0 <r < «; implied by the © function in Eq. (9).)

Strictly speaking, Eq. (7) would hold for «; < 2 only, but we could intro-
duce a regularization, e. g. by a factor (1 — amy®)¥. This would warrant conver-
gence of the integration on both sides of Eq. (7) without altering the disconti-
nuity below oy = 8(n — a).
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Figs 1 to 3 show the function disc > (t) for various values of the intercept a.
The marks #x; denote the positions of the thresholds #; = (M + M))2.

The numerical results suggest an asymptonic behaviour like ME ~ (log t)—3e,
We do not see as present a way to prove this hypothesis.

We are grateful to H. Dorn for participation in the numerical calculations.
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